Análisis en Varias Variables

Sergio Plaza S.
Contenidos

1 Topología en Espacios Vectoriales Normados 1
 1.1 Producto Interno 2
 1.2 Norma en Espacios Vectoriales 3
 1.3 Distancia 8
 1.4 Topología en Espacios Vectoriales Normados 11
 1.5 Convexidad 12
 1.6 Ejercicios 19

2 Sucesiones en Espacios Vectoriales Normados 27
 2.1 Puntos de Acumulación 35
 2.2 Caracterización de los Conjuntos Cerrados 38
 2.3 Conjuntos Compactos 41
 2.4 Conexidad 45
 2.5 Ejercicios 46

3 Aplicaciones Continuas 49
 3.1 Continuidad Uniforme 65
 3.2 Homeomorfismos 67
 3.3 Ejercicios 74
4 Límite de Aplicaciones 81
4.1 Ejercicios ... 90

5 Propiedades Básicas de las Aplicaciones Continuas 97
5.1 Caminos .. 102
5.2 Ejercicios .. 105

6 Cálculo Diferencial en Espacios Euclideanos 107
6.0.1 Notaciones Básicas .. 107
6.1 Derivada .. 108
 6.1.1 Matriz Jacobiana 125
6.2 Casos Especiales .. 127
 6.2.1 Caminos Diferenciables 127
6.3 Funciones Diferenciables 129
6.4 Clase de Diferenciabilidad 133
6.5 Teoremas Fundamentales del Cálculo Diferencial 141
 6.5.1 Teorema de la Función Inversa 148
 6.5.2 Forma Local de las Submersiones 158
 6.5.3 Forma Local de las Inmersiones 165
6.6 Fórmulas de Taylor .. 172
6.7 Valores Extremos de Aplicaciones 175
6.8 Multiplicadores de Lagrange 181
6.9 Ejercicios .. 182

7 Superficies en Espacios Euclideanos 219
7.1 Ejemplos de Superficies 226
7.2 Aplicaciones Diferenciables 245
7.3 Espacio Tangente .. 252
 7.3.1 Bases en T_pM 255
7.3.2 Cambio de Base en T_pM 257
7.3.3 Derivada de una Aplicación Diferenciable entre Superficies 261
7.4 Partición de la Unidad 263
7.5 Partición de la Unidad 267
7.6 Ejercicios ... 269

8 Orientación en superficies 295
8.1 Orientación en Espacios Vectoriales 295
8.2 Superficies Orientables 298
8.3 Orientación y Atlas 302
8.4 Ejercicios ... 311

9 Superficies con Borde .. 315
9.1 Cambios de Coordenadas 319
9.2 Ejercicios ... 329

10 Cálculo Integral .. 333
10.1 Integral de Caminos 333
10.2 Integrales Múltiples 336
10.3 Conjuntos de Medida Cero y Conjuntos de Contenido .. 340
10.4 Cálculo de Integrales 349
10.5 Teorema del Cambio de Variable 356
10.6 Ejercicios ... 362

11 Formas Diferenciales en Superficies 385
11.1 Cambio de Variable y Formas Co–inducidas 391
11.2 Derivada Exterior 400
11.3 Ejercicios ... 407
12 Integración de Formas Diferenciables 411

12.1 Integral de k-formas 411
12.2 Teorema de Stokes 419
 12.2.1 Teorema de Green y Teorema de Gauss 424
12.3 Ejercicios .. 428
Capítulo 1

Topología en Espacios Vectoriales Normados

En lo que sigue \mathbb{R}^n denota el espacio euclídeo n-dimensional. Notemos que $\mathbb{R}^0 = \{0\}$. Denotamos los puntos de \mathbb{R}^n por $x = (x_1, \ldots, x_n)$, donde $x_i \in \mathbb{R}$ ($i = 1, \ldots, n$). Aquí, $(x_1, \ldots, x_n) = (y_1, \ldots, y_n)$ significa que $x_i = y_i$ para todo $i = 1, \ldots, n$. En \mathbb{R}^n tenemos una estructura natural de espacio vectorial, dada como sigue. Si $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n)$ dos dos puntos de \mathbb{R}^n y λ es un número real, definimos la suma $x + y$ y el producto escalar λx, por

a)
$x + y = (x_1 + y_1, \ldots, x_n + y_n)$,

b)
$\lambda x = (\lambda x_1, \ldots, \lambda x_n)$,

c des esta estructura \mathbb{R}^n es un espacio vectorial de dimensión n sobre \mathbb{R}. El elemento neutro para la suma es el vector $0 = (0, \ldots, 0)$, y el elemento inverso de $x = (x_1, \ldots, x_n)$ es el elemento $-x = (-x_1, \ldots, -x_n)$. Tenemos también una base destacada, $\mathcal{E} = \{e_1, \ldots, e_n\}$, donde para $i = 1, \ldots, n$ vectores e_i son dados por $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$, con
un 1 en la posición i y ceros en las restantes posiciones, la cual llamaremos *base canónica*, en esta base cada $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ se escribe como $x = x_1e_1 + \cdots + x_ne_n = \sum_{i=1}^{n} x_ie_i$.

1.1 Producto Interno

Sea V un espacio vectorial. Un *producto interno* en V es una aplicación $I : V \times V \to \mathbb{R}$ que satisface:

- **Pi1.** $I(x, y) = I(y, x)$ para todo $x, y \in V$,
- **Pi2.** $I(x + x', y) = I(x, y) + I(x', y)$ para todo $x, x', y \in V$,
- **Pi3.** $I(\alpha x, y) = \alpha I(x, y) = I(x, \alpha y)$ para todo $x, y \in V$ y todo $\alpha \in \mathbb{R}$,
- **Pi4.** $I(x, x) > 0$ si $x \neq 0$.

Por ejemplo, en \mathbb{R}^n tenemos el producto interno canónico, el cual es dado por $I((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \sum_{i=1}^{n} x_iy_i$, en este caso I se denota simplemente por \langle , \rangle.

Un forma natural de construir otros productos internos en \mathbb{R}^n es considerar una matriz $A = (a_{ij})_{n \times n}$ simétrica, es decir, $A^T = A$ (donde A^T es la traspuesta de A), positiva definida, es decir, $\langle Ax, x \rangle = \sum_{i,j=1}^{n} a_{ij}x_ix_j > 0$ para todo $x \neq 0$, en estas condiciones definimos $I_A((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \sum_{i,j=1}^{n} a_{ij}x_iy_j$. En general, se usa la notación $(x_1, \ldots, x_n)A(y_1, \ldots, y_n)^T$ para denotar el producto interno I_A.

Observación. Sea $A = (a_{ij})_{1 \leq i, j \leq n}$ una matriz de orden $n \times n$. Se definen los menores principales A_k ($1 \leq k \leq n$) de A como las subma-
trizas

\[A_k = \begin{pmatrix} a_{11} & \cdots & a_{ik} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{pmatrix}. \]

Entonces se tiene que \(A \) es positiva definida si \(\det(A_k) > 0 \) para todo \(1 \leq k \leq n \).

Por ejemplo, las siguientes matrices son positivas definidas,

\[A = \begin{pmatrix} 3 & 8 \\ -2 & 3 \end{pmatrix} \quad \text{y} \quad A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}. \]

1.2 Norma en Espacios Vectoriales

Una norma en un espacio vectorial \(V \) es una aplicación \(N : V \to \mathbb{R} \) que satisface:

N1.- \(N(x + y) \leq N(x) + N(y) \) para todo \(x, y \in V \),

N2.- \(N(\alpha x) = |\alpha| N(x) \) para todo \(x \in V \) y todo \(\alpha \in \mathbb{R} \),

N3.- \(N(x) > 0 \) para todo \(x \in V \), con \(x \neq 0 \).

Ejemplos. En \(\mathbb{R}^n \) tenemos las normas

1. \(N(x) = \sqrt{\langle x, x \rangle} \), la cual es denotada, en este caso por \(\| \cdot \| \), y es llamada norma euclídea.

2. \(\|x\|_M = \max\{|x_1|, \ldots, |x_n|\} \), llamada norma del máximo.

3. \(\|x\|_S = \sum_{i=1}^{n} |x_i| \), llamada norma de la suma.
Dado un producto interno I en V, decimos que dos vectores $x, y \in V$ son ortogonales respecto a I si $I(x, y) = 0$, por ejemplo, en \mathbb{R}^n con el producto interno canónico se tiene que los vectores e_i y e_j de la base canónica son ortogonales cuando $i \neq j$.

Un modo natural de obtener normas en un espacio vectorial V, dotado de un producto interno I, es definir

$$N_I(x) = \sqrt{I(x, x)}.$$

En efecto, es inmediato que $N_I(x) > 0$ cuando $x \neq 0$, y que $N_I(\alpha x) = |\alpha|N_I(x)$ para todo $x \in V$ y todo $\alpha \in \mathbb{R}$. Ahora, si $x, y \in V$ entonces

$$(N_I(x + y))^2 = I(x + y, x + y) = (I(x, x))^2 + 2I(x, y) + (I(y, y))^2$$

para terminar la prueba, demostraremos el siguiente teorema.

Teorema 1.1 (desigualdad de Cauchy–Schwartz) Sea V un espacio vectorial dotado producto interno I. Entonces para cada $x, y \in V$ se tiene que $|I(x, y)| \leq N_I(x)N_I(y)$. Además, la igualdad vale s\, o s\, o si, s\, olo s\, o, uno de los vectores x, y es múltiplo escalar del otro.

Demostración. Si $x = 0$ o $y = 0$ es resultado está probado.

Supongamos que $y \neq 0$. Sean $\alpha = I(x, y)/(N_I(y))^2$ y $z = x - \alpha y$. Se tiene $I(z, y) = I(x - \alpha y, y) = I(x, y) - \alpha I(y, y) = I(x, y) - \alpha(N_I(y))^2 = I(x, y) - I(x, y) = 0$, luego z es ortogonal a y. Ahora, como $x = z + \alpha y$

$$\begin{align*}
(N_I(x))^2 &= I(z + \alpha y, z + \alpha z) \\
&= I(z, z) + \alpha^2 I(y, y) + 2\alpha I(z, y) \\
&= (N_I(z))^2 + \alpha^2(N_I(y))^2,
\end{align*}$$

de donde

$$(N_I(x))^2 \geq \alpha^2(N_I(y))^2 = \left(\frac{I(x, y)}{(N_I(y))^2}\right)^2(N_I(y))^2 = \frac{(I(x, y))^2}{(N_I(y))^2},$$
esto es, \((N(x)y)^2 \geq (I(x,y))^2\), lo cual implica que \(|I(x,y)| \leq N(x)y\). Ahora, la igualdad se verifica si, y sólo si, \(N(z) = 0\), esto es, si \(z = 0\), es decir, \(x = ay\). Lo que completa la prueba.

Ejemplo. Un ejemplo interesante de norma viene dado por \(||||_p : \mathbb{R}^n \rightarrow \mathbb{R}\) definida para \(p \geq 1\) por

\[
||(x_1, \ldots, x_n)||_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p}.
\]

Esta es una norma en \(\mathbb{R}^n\), llamada norma de Minkowski. Para \(p = 1\) corresponde a la norma de la suma anterior y para \(p = 2\) no es más que la norma euclideana.

Los axiomas N.2 y N.3 son de verificación inmediata, para demostrar que \(||||_p\) satisface el axioma N.1, primero probaremos el siguiente

Lema 1.1 Sean \(p, q\) números reales mayores que \(1\) tales que \(\frac{1}{p} + \frac{1}{q} = 1\). Entonces para cualquier par de números reales \(a\) y \(b\) se tiene que

\[
|ab| \leq \frac{|a|^p}{p} + \frac{|b|^q}{q}.
\]

Demostración. Consideremos la función \(f : [0, \infty] \rightarrow \mathbb{R}\) definida por \(f(x) = x^\alpha + \alpha x + \alpha\), donde \(\alpha \in [0, 1]\). Entonces \(f\) alcanza su valor máximo en \(x = 1\). Tomando \(\alpha = \frac{1}{p}\) y haciendo \(x = \frac{|a|^p}{|b|^q}\) se sigue el resultado.

Proposición 1.1 (desigualdad de Hölder). Sean \(x = (x_1, \ldots, x_n)\) e \(y = (y_1, \ldots, y_n)\) dos vectores en \(\mathbb{R}^n\) y sean \(p, q\) números reales mayores que \(1\), tales que \(\frac{1}{p} + \frac{1}{q} = 1\). Entonces

\[
\sum_{i=1}^{n} |x_i y_i| \leq \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q \right)^{1/q}.
\]
Demostración. Supongamos primero que $x \neq 0$ y que $y \neq 0$. Hagamos $\alpha = (|x_1|^p + \cdots + |x_n|^p)^{1/p}$ y $\beta = (|y_1|^q + \cdots + |y_n|^q)^{1/q}$. La desigualdad a probar se escribe entonces como

$$\left| \frac{x_1 y_1}{\alpha \beta} \right| + \left| \frac{x_2 y_2}{\alpha \beta} \right| + \cdots + \left| \frac{x_n y_n}{\alpha \beta} \right| \leq 1.$$

A partir de esto la prueba es similar a la prueba de la desigualdad de Cauchy–Schwartz. Los detalles quedan a cargo del lector.

Ahora probaremos la desigualdad triangular para $\|\|_p$, donde $p > 1$.

Escribiendo esta en forma explícita, nos queda

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p \right)^{1/p} \leq \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} + \left(\sum_{i=1}^{n} |y_i|^p \right)^{1/p}.$$

Para su demostración, escribamos

$$\sum_{i=1}^{n} |x_i + y_i|^p \leq \sum_{i=1}^{n} (|x_i| + |y_i|)^p$$

$$= \sum_{i=1}^{n} (|x_i| + |y_i|)^{p-1} \cdot (|x_i| + |y_i|)$$

$$= \sum_{i=1}^{n} (|x_i| + |y_i|)^{p-1} |x_i| + \sum_{i=1}^{n} (|x_i| + |y_i|)^{p-1} |y_i|$$

aplicamos ahora la desigualdad de Hölder a cada una de las sumas anteriores del último miembro. Para la primera suma haga $a_i = |x_i|$ y $b_i = (|x_i| + |y_i|)^{p-1}$, y para la segunda la elección es completamente análoga. Los detalles son dejados a cargo del lector.

Ejemplo. Sea $M(m \times n, \mathbb{R})$ el espacio vectorial de las matrices de orden $m \times n$ con coeficientes reales. Sean N_1 y N_2 normas en \mathbb{R}^m y \mathbb{R}^n,

Sergio Plaza

respectivamente. Si \(A \in \mathbb{M}(m \times n, \mathbb{R}) \) la escribimos como matriz filas

\[
A = \begin{pmatrix}
 f_1 \\
 f_2 \\
 \vdots \\
 f_m
\end{pmatrix}
\]

donde \(f_i = (a_{i1} \ldots a_{in}) \), y \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) entonces \(Ax = (\langle f_1, x \rangle, \ldots, \langle f_m, x \rangle) \) (\(\langle u, v \rangle \) denota el producto interno usual en \(\mathbb{R}^n \)).

Usando las normas \(N_1 \) y \(N_2 \) definimos una \(N \) norma en \(\mathbb{M}(m \times n, \mathbb{R}) \), llamada norma asociada, como sigue

\[
N(A) = \sup \left\{ \frac{N_1(Ax)}{N_2(x)} : N_2(x) \neq 0 \right\} = \sup \{ N_1(Ax) : N_2(x) = 1 \}.
\]

La verificación que \(N(A) \) es una norma en \(\mathbb{M}(m \times n, \mathbb{R}) \) es fácil y se deja a cargo del lector (sólo hay que usar las propiedades del supremos de subconjuntos de los números reales: \(\sup(aX) = a \sup(X) \) si \(a \) es una constante positiva, y \(\sup(X + Y) = \sup(X) + \sup(Y) \), donde \(aX = \{ ax : x \in X \} \) y \(X + Y = \{ x + y : x \in X, y \in Y \} \).

Para el caso de matrices de orden \(n \times n \), usando la norma euclidiana en \(\mathbb{R}^n \), la expresión de la norma \(N(A) \), que en este caso denotamos por \(||A||_2 \) viene dada por la fórmula

\[
||A||_2 = \sqrt{\sum_{i,j=1}^{n} a_{ij}^2}
\]

como es fácil de verificar desde la definición. Para obtener una expresión sencilla de \(||A||_2 \) recordemos que si \(A \in \mathbb{M}(n \times n, \mathbb{R}) \) entonces \(A^T \) denota la matriz transpuesta de \(A \) y si \(A = (a_{ij})_{1 \leq i,j \leq n} \) entonces el elemento \((i, j) \) de la matriz \(A^T \) es \(a_{ji} \). Recordemos también que la traza de \(A \) es el número \(\text{traza}(A) = \sum_{i=1}^{n} a_{ii} \). Con las notaciones anteriores tenemos la siguiente proposición.
Proposición 1.2 Sea $A \in M(n \times n, \mathbb{R})$ entonces $||A||_2 = \sqrt{\text{traza}(AA^T)}$.

Demostración. Si $A, B \in M(n \times n, \mathbb{R})$ entonces el elemento (i, k) de la matriz $A \cdot B$ es $\sum_{j=1}^{n} a_{ij} b_{jk}$. En particular, el elemento (i, i) del producto $A \cdot B$ es $\sum_{j=1}^{n} a_{ij} b_{ji}$, luego la traza de $A \cdot B$ es dada por $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji}$. Ahora, tomando $B = A^T$ se tiene que $b_{ji} = a_{ij}$, luego traza($A \cdot A^T$) = $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2 = ||A||_2^2$, lo que completa la prueba.

1.3 Distancia

Sea X un conjunto no vacío. Una distancia en X es una aplicación $d : X \times X \longrightarrow \mathbb{R}$ que satsface

d1.- $d(x, y) > 0$ si $x \neq y$,

d2.- $d(x, y) = d(y, x)$ para todo $x, y \in X$ (simetría),

d3.- $d(x, z) \leq d(x, y) + d(y, z)$ para todo $x, y, z \in X$ (desigualdad triangular).

Ejemplos

1. Sea V un espacio vectorial normado, con una norma N. Definimos una distancia d_N en V como

$$d_N(x, y) = N(x - y).$$

En el caso en que $V = \mathbb{R}^n$ y N es la norma euclideana, se tiene que

$$d_2((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}. $$
la cual es llamada distancia euclidean. De modo análogo, se tiene las distancias $d_S(x, y) = ||x - y||_S = \sum_{i=1}^{n} |x_i - y_i|$ y $d_M(x, y) = ||x - y||_M = \max\{|x_i - y_i| : i = 1, \ldots, n\}$.

2. La distancia en $\mathbb{M}(n \times n, \mathbb{R})$ por la norma $|| \cdot ||_2$ anterior es dada por

$$d(A, B) = \sqrt{\text{traza}((A - B)(A^T - B^T))}.$$

3. Sea X un conjunto no vacío. Tenemos definida la aplicación $d : X \times X \to \mathbb{R}$ por

$$d(x, y) = \begin{cases} 1 & \text{si } x \neq y \\ 0 & \text{si } x = y. \end{cases}$$

Es fácil probar que esta es una distancia en X, por lo tanto en cada conjunto no vacío podemos definir una distancia como la de arriba.

4. Sea $C^0([0, 1], \mathbb{R}) = \{ f : [0, 1] \to \mathbb{R} : f \text{ es continua} \}$. Es claro que $C^0([0, 1], \mathbb{R})$ es un espacio vectorial con la suma de funciones y el producto escalar de una función por un número real. También podemos definir una distancia en este conjunto por

$$d(f, g) = \left(\int_0^1 (f(x) - g(x))^2 \, dx \right)^{1/2}.$$

Definición 1.1 Dos funciones distancias d y d' (métricas) en un conjunto X son equivalentes si existen constantes positivas k, k', tales que $k'dS(x, y) \leq d'(x, y) \leq kd(x, y)$ para todo $x, y \in X$.

Para las distancias d_2, d_S, y d_M definidas en \mathbb{R}^n tenemos el siguiente teorema.
Teorema 1.2 Las distancias d_2, d_S, y d_M definidas en \mathbb{R}^n son equivalentes.

Demostración. Sean $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n)$ vectores en \mathbb{R}^n. Vamos a demostrar que $d_2(x, y) \leq \sqrt{n} d_M(x, y) \leq \sqrt{n} d_S(x, y) \leq nd_2(x, y)$, de donde se deduce directamente el teorema.

Tenemos $|x_i - y_i| \leq \max\{|x_j - y_j| : j = 1, \ldots, n\} = d_M(x, y)$, para todo $i = 1, \ldots, n$, luego

$$(d_2(x, y))^2 = \sum_{i=1}^{n} (x_i - y_i)^2 \leq \sum_{i=1}^{n} (d_M(x, y))^2 = n (d_M(x, y))^2,$$

luego $d_2(x, y) \leq \sqrt{n} d_M(x, y)$.

Ahora, notemos que $d_M(x, y) = |x_j - y_j|$ para algún $1 \leq j \leq n$, luego d_M es uno de los términos en la suma que define a $d_S(x, y)$, y como todos esos términos son no negativos se tiene que $d_M(x, y) \leq d_S(x, y)$, luego $\sqrt{n} d_M(x, y) \leq \sqrt{n} d_S(x, y)$.

Finalmente, sea $w_i = |x_i - y_i| - d_S(x, y)/n$. Tenemos $w_i^2 = |x_i - y_i|^2 - 2|x_i - y_i|d_S(x, y)/n + (d_S(x, y))^2/n^2$. Tenemos entonces que

$$\sum_{i=1}^{n} w_i^2 = \sum_{i=1}^{n} |x_i - y_i|^2 - 2d_S(x, y) \frac{1}{n} \sum_{i=1}^{n} |x_i - y_i| + \frac{(d_S(x, y))^2}{n^2} \sum_{i=1}^{n} 1$$

$$= (d_2(x, y))^2 - 2 \frac{(d_S(x, y))^2}{n} + \frac{(d_S(x, y))^2}{n}$$

$$= (d_2(x, y))^2 - \frac{(d_S(x, y))^2}{n}.$$

Como $\sum_{i=1}^{n} w_i^2 \geq 0$, concluimos que $(d_2(x, y))^2 - \frac{(d_S(x, y))^2}{n} \geq 0$, luego $\frac{(d_S(x, y))^2}{n} \leq (d_2(x, y))^2$, de donde $d_S(x, y) \leq \sqrt{n} d_2(x, y)$ y por lo tanto $\sqrt{n} d_S(x, y) \leq nd_2(x, y)$, lo que completa la prueba.
1.4 Topología en Espacios Vectoriales Normados

A seguir introducimos las nociones básicas de topología, esto en el contexto de espacios vectoriales normados.

Sea V un espacio vectorial con una norma N. Dados $a \in V$ y un número real $r > 0$. La bola de centro en a y radio r es el conjunto

$$B(a, r) = \{ x \in V : N(x-a) < r \}$$

de modo análogo, tenemos la bola cerrada $B[a, r] = \{ x \in V : N(x-a) \leq r \}$, y la esfera $S[a, r] = \{ x \in V : N(x-a) = r \}$.

** Ejemplo.** En \mathbb{R}^2 con las normas $\| \|$, $\| \|_S$, y $\| \|_M$, geométricamente se tiene que las bolas unitarias son dadas por

![Diagramas de bolas unitarias](image)

Observación. En general, si $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$ entonces con la norma $\| \|_M$, se tiene que

$$B(a, r) = \{ a_1 - r, a_1 + r \times \cdots \times a_n - r, a_n + r \},$$

pues $\| x - a \|_M < r$ si, y sólo si, $\vert x_1 - a_1 \vert < r, \ldots, \vert x_n - a_n \vert < r$. La prueba es fácil y se deja a cargo del lector.
Esta propiedad de la norma del máximo la hace conveniente en relación a los productos cartesianos.

1.5 Convexidad

Sean \(x, y \in V \). El segmento de cerrado de recta que une \(x \) e \(y \) es el conjunto

\[
[x, y] = \{(1 - t)x + ty : 0 \leq t \leq 1\}.
\]

Definición 1.2 Decimos que un subconjunto \(X \subset V \) es convexo si, para cualquier par de puntos \(x, y \in X \) se tiene que \([x, y] \subset X\).

Ejemplos.

1. Todo subespacio vectorial de un espacio vectorial es un conjunto convexo.

2. Todo subespacio afín de un espacio vectorial es convexo. Recorde-mos que \(A \subset V \) es un espacio afín si, existe un subespacio vectorial \(F \subset V \) y un elemento \(a \in V \) tal que \(A = a + F = \{a + x : x \in F\} \).

3. Si \(W \) es otro espacio vectorial y \(E \subset V \), \(F \subset W \) son conjuntos convexos entonces \(E \times F \subset V \times W \) es un conjunto convexo.

4. El conjunto \(V \setminus \{0\} \) no es un conjunto convexo, pues dado \(x \in V \), el segmento de recta que une \(x \) con \(-x \) contiene a \(0 \in V \), luego \([x, -x] \not\subset V\).

Teorema 1.3 Sea \(V \) un espacio vectorial normado, con norma \(N \). Entonces toda bola (abierta o cerrada) \(B \subset V \) es un conjunto convexo.
Demostración. Haremos la prueba para bolas abiertas, para bolas cerradas la prueba completamente análoga.

Sea \(B(a, r) \subset V \) una bola abierta. Sean \(x, y \in B(a, r) \) entonces \(N(x-a) < r \) y \(N(y-a) < r \). Sea \(t \in [0, 1] \), tenemos \((1-t)x + ty - a = (1-t)(x-a) + t(y-a)\), luego \(N((1-t)x + ty - a) = N((1-t)(x-a) + t(y-a)) \leq N((1-t)(x-a)) + N(t(y-a)) = (1-t)N(x-a) + tN(y-a) < (1-t)r + tr = r \). Lo que completa la prueba.

Definición 1.3 Sea \(X \subset V \). Decimos que \(X \) es acotado si, existe \(r > 0 \) tal que \(X \subset B(0, r) \) (es decir, para cada \(x \in X \) se tiene que \(N(x) < r \).

Nota. En la definición anterior, también podemos usar bolas cerradas en vez de bolas abierta.

Observación. Si existe una bola \(B(a, r) \) tal que \(X \subset B(a, r) \) entonces \(X \) es acotado.

En efecto, para todo \(x \in X \) se tiene que \(N(x-a) < r \). Sea \(s = r + N(a) \). Entonces tenemos que \(N(x) = N(x-a + a) \leq N(x-a) + N(a) < r + N(a) \), luego \(X \subset B(0, s) \).

Por lo anterior, podemos decir que \(X \subset V \) es acotado si está contenido en alguna bola bola.

Observación. Como las tres normas \(\| \cdot \|, \| \cdot \|_S, \) y \(\| \cdot \|_M \) que hemos definido en \(\mathbb{R}^n \) satisfacen la relación \(\|x\|_M \leq \|x\|_S \leq n\|x\|_M \), se tiene que \(X \subset \mathbb{R}^n \) es acotado en relación a una de esas normas si, y sólo si, es acotado en relación a cualquiera de las otras dos normas.

Para cada \(i = 1, \ldots, n \), sean \(\pi_i : \mathbb{R}^n \rightarrow \mathbb{R} \) las aplicaciones dadas por \(\pi_i(x_1, \ldots, x_n) = x_i \), estas son llamadas proyección en la \(i \)-ésima coordenada. Tenemos el siguiente teorema.
Teorema 1.4 Sea $X \subset \mathbb{R}^n$. Entonces X es acotado si, y sólo si, cada conjunto $X_i = \pi_i(X) \subset \mathbb{R}$ es acotado.

Demostración. Inmediata, se deja a cargo del lector.

Definición 1.4 Sea $A \subset V$. Decimos que A es un conjunto abierto si, para cada $x \in A$ existe $\varepsilon > 0$ tal que $B(x, \varepsilon) \subset A$.

Ejemplos

1. Toda bola abierta en V es un conjunto abierto.

 En efecto, sea $a \in V$ y sea $r > 0$. Si $x \in B(a, r)$ entonces $N(x - a) < r$. Sea $\delta = r - N(x - a)$. Es claro que $\delta > 0$.

 Dado $y \in B(x, \delta)$, se tiene que $N(y - a) \leq N(y - x) + N(x - a) < \delta + N(x - a) = r - N(x - a) + N(x - a) = r$, es decir, si $y \in B(x, \delta)$ entonces $N(y - a) < r$, luego $y \in B(a, r)$, por lo tanto $B(x, \delta) \subset B(a, r)$.

2. El conjunto vacío, \emptyset, es un conjunto abierto.

 En efecto, si no, existe $x \in \emptyset$ (*) tal que para cada $\varepsilon > 0$ se tiene que $B(x, \varepsilon)$ no está contenido en el conjunto vacío. Ahora, notemos que (*) ya nos da una contradicción, por lo tanto el conjunto vacío es abierto.

3. El espacio vectorial V es un conjunto abierto.

 En efecto, dado $x \in V$ basta tomar cualquier $\varepsilon > 0$ y se tiene que $B(x, \varepsilon) \subset V$.

4. Sea $\{A_\lambda : \lambda \in \Lambda\}$ una colección arbitraria de conjuntos abiertos $A_\lambda \subset V$, entonces $A = \bigcup_{\lambda \in \Lambda} A_\lambda \subset V$ es un conjunto abierto.
En efecto, sea \(x \in \bigcup_{\lambda \in \Lambda} \) entonces existe \(\lambda_0 \in \Lambda \) tal que \(x \in A_{\lambda_0} \).

Como \(A_{\lambda_0} \) es un conjunto abierto, existe \(\varepsilon > 0 \) tal que \(B(x, \varepsilon) \subset A_{\lambda_0} \subset \bigcup_{\lambda \in \Lambda} A_{\lambda} \).

5. Sean \(A_1, A_2 \subset V \) conjuntos abiertos. Entonces \(A_1 \cap A_2 \) es un conjunto abierto.

En efecto, sea \(x \in A_1 \cap A_2 \). Como cada \(A_i \) \((i = 1, 2) \) es un conjunto abierto, existen \(\varepsilon_i > 0 \) \((i = 1, 2) \) tales que \(B(x, \varepsilon_i) \subset A_i \).

Sea \(\varepsilon = \min\{\varepsilon_1, \varepsilon_2\} \) entonces se tiene que \(B(x, \varepsilon) \subset A_1 \cap A_2 \).

Es claro que esta propiedad se extiende a un número finito de conjuntos.

En resumen, tenemos probado el siguiente teorema.

Teorema 1.5 Sea \(\mathcal{A} = \{A \subset V : A \ es \ un \ conjunto \ abierto\} \). Entonces

- \(O_1.- \ \emptyset, V \in \mathcal{A} , \)
- \(O_2.- \ si \ A_1, A_2 \in \mathcal{A} \ entonces \ A_1 \cap A_2 \in \mathcal{A} , \)
- \(O_3.- \ si \ \{A_\lambda : \lambda \in \Lambda\} \ es \ una \ colección \ arbitraria \ de \ elementos \ de \ \mathcal{A} , \)
 entonces \(\cup_{\lambda \in \Lambda} A_\lambda \in \mathcal{A} . \)

Nota. Usamos la notación \(O_1, O_2, y O_3 \), por la simple razón de que \(O \) representa la palabra *open* del inglés, la cual significa *abierto*.

Una colección \(\mathcal{O} \) de subconjuntos de \(V \) que satisface las propiedades \(O_1, O_2, y O_3 \) del teorema, es llamada una *topología* para \(V \), y cada elemento \(O \in \mathcal{O} \) es llamado un conjunto abierto de \(V \).

Más general, si \(X \subset V \). Decimos que \(O \subset X \) es abierto en \(X \) si, existe un conjunto abierto \(A \subset V \) tal que \(O = X \cap A \). Las siguiente
propiedades son fáciles de verificar (los detalles se dejan a cargo del lector.)

1. - \emptyset y X son conjuntos abiertos en X,

2. - si $O_1, O_2 \subset X$ son conjuntos abiertos en X entonces $O_1 \cap O_2$ es un conjunto abierto en X,

3. - si $\{O_\alpha : \alpha \in \Gamma\}$ es una colección arbitraria de conjuntos abiertos en X, entonces $\cup_{\alpha \in \Gamma} O_\alpha$ es un conjunto abierto en X.

Por lo tanto, la colección $\mathcal{O} = \{O \subset X : O es abierto en X\}$ es una topología para X.

Ejemplos.

1. Sea $X = \mathbb{R}_0^+ = \{x \in \mathbb{R} : x \geq 0\}$. Entonces $[0,1]$ es un conjunto abierto en \mathbb{R}_0^+, por ejemplo $[0,1[= \mathbb{R}_0^+ \cap]-1,1[$. Notemos que $[0,1]$ no es un conjunto abierto en \mathbb{R}.

2. Si $X \subset V$ y $O \subset X$ es un conjunto abierto en V, entonces O es abierto en X. La prueba es fácil y se deja al lector. Note que por el ejemplo 1 arriba, tenemos que la recíproca de esta propiedad no es verdadera.

Definición 1.5 Sea $A \subset V$. Decimos que $x \in A$ es un punto interior de A si, existe $\varepsilon > 0$ tal que $B(x, \varepsilon) \subset A$.

Ejemplos.

1. Todo $x \in B(a,r)$ es un punto interior de $B(a,r)$, como fué probado anteriormente.
2. Sea \(x \in B[a, r] \) tal que \(N(x - a) = r \), entonces \(x \) no es un punto interior de \(B[a, r] \). Esto es claro, pues para todo \(\varepsilon > 0 \) existe \(u \in B(x, \varepsilon) \) tal que \(u \notin B[a, r] \).

Definición 1.6 El interior de un conjunto \(A \subset V \) es el conjunto

\[
\text{Int}(A) = \{ x \in A : \; x \text{ es un punto interior de } A \}.
\]

Para todo conjunto \(A \subset V \) se tiene que \(\text{Int}(A) \subset A \).

Ejemplos.

1. Sea \(A = [0, 1] \subset \mathbb{R} \), se tiene que \(\text{Int}([0, 1]) =]0, 1[\).

2. Sea \(A = \{1/n : \; n \geq 1\} \subset \mathbb{R} \), entonces \(\text{Int}(A) = \emptyset \).

3. Sea \(\mathbb{Q} \subset \mathbb{R} \) el conjunto de los número racionales. Entonces \(\text{Int}(\mathbb{Q}) = \emptyset \), pues dado \(q \in \mathbb{Q} \) y \(\varepsilon > 0 \) se tiene que \(B(q, \varepsilon) \) contiene puntos racionales y puntos irracionales. Más general, se tiene que \(\text{Int}(\mathbb{Q}^n) = \emptyset \), donde \(\mathbb{Q}^n = \mathbb{Q} \times \cdots \times \mathbb{Q} \subset \mathbb{R}^n \).

4. \(\text{Int}(B[a, r]) = B(a, r) \).

Proposición 1.3 Sea \(X \subset V \) entonces \(\text{Int}(X) \) es un conjunto abierto.

Demostración. Si \(\text{Int}(X) = \emptyset \), no hay nada que probar.

Supongamos que \(\text{Int}(X) \neq \emptyset \). Si \(a \in \text{Int}(X) \) entonces existe \(\varepsilon > 0 \) tal que \(B(a, \varepsilon) \subset X \). Ahora, si \(x \in B(a, \varepsilon) \) tomando \(\delta = \varepsilon - N(x - a) \) se tiene que \(\delta > 0 \) y \(B(x, \delta) \subset B(a, \varepsilon) \), luego \(x \in \text{Int}(X) \). Lo que completa la prueba.

Nota. Se tiene que \(X \subset V \) es un conjunto abierto si, y sólo si, \(X = \text{Int}(X) \).
Ahora, si $X \subset V$ es un conjunto no vacío, entonces puede ocurrir sólo una de las siguientes alternativas:

a) $a \in \text{Int}(X)$, o

b) $a \in \text{Int}(V - X)$, o

c) toda bola abierta de centro en a y radio positivo intersecta a X y a $V - X$.

Definición 1.7 Sea $X \subset V$. Decimos que un punto $a \in V$ es un punto frontera de X si toda bola abierta de centro en a y radio positivo intersecta (en forma no vacía) a X y a $V - X$. El conjunto de puntos fronteras de X, es denotado por

$$\text{Fr}(X) = \{a \in V : a \text{ es un punto frontera de } X\}.$$

Nota. Si $X \subset V$ es un conjunto abierto entonces $X \cap \text{Fr}(X) = \emptyset$.

Definición 1.8 Sea $C \subset V$. Decimos que C es un conjunto cerrado en V si su complemento $X = V - C$ es un conjunto abierto en V.

Usando las propiedades de la complementación de conjuntos y la definición de conjunto cerrado, se prueba (fácilmente) el siguiente

Teorema 1.6 Sea $\mathcal{C} = \{C \subset V : C \text{ es un conjunto cerrado en } V\}$.

Entonces

$C1.$- $\emptyset, V \in \mathcal{C},$

$C2.$- si $C_1, C_2 \in \mathcal{C}$ entonces $C_1 \cup C_2 \in \mathcal{C}$ (esta propiedad se extiende a colecciones finitas de conjuntos cerrados),
C3.- si \(\{ C_\gamma : \gamma \in \Gamma \} \) es una colección arbitraria, con \(C_\gamma \in C \) para todo \(\gamma \in \Gamma \), entonces \(\bigcap_{\gamma \in \Gamma} C_\gamma \in C \).

Nota. Es claro ahora que podemos definir conjuntos cerrados en un subconjunto \(X \subset V \), y que en vez de conjuntos abiertos, podemos usar conjuntos cerrados para definir una topología en \(V \) (respectivamente, en \(X \)).

1.6 Ejercicios

1. Verifique que \(|| \cdot ||, \quad || \cdot ||_M, \quad y \quad || \cdot ||_S \) son normas en \(\mathbb{R}^n \).

2. Pruebe que para todo \(x \in \mathbb{R}^n \) se tiene que

\[
||x||_M \leq ||x|| \leq ||x||_S \leq n ||x||_M.
\]

3. Pruebe que \(X \subset V \) es un conjunto abierto si, y sólo si, \(X = \text{Int}(X) \).

4. Si \(X \subset V \) es un conjunto abierto. Pruebe que \(X \cap \text{Fr}(X) = \emptyset \).

5. Pruebe que \(||x||_M \leq ||x||_p \leq n^{1/p} ||x||_M \) para todo \(x \in \mathbb{R}^n \).

6. Pruebe que \(||x||_M \leq ||x|| \leq ||x||_S \) para todo \(x \in \mathbb{R}^n \).

7. Pruebe que \(\langle \cdot , \cdot \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} \) definida por \(\langle (x_1, x_2), (y_1, y_2) \rangle = x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2 \) es un producto interno en \(\mathbb{R}^2 \). Escriba en forma explícita la norma inducida por este producto interno y la función distancia asociada. Represente gráficamente la bola unitaria en este caso.
8. Pruebe que la función $N(A)$ definida en $\mathbb{M}(m \times n, \mathbb{R})$ es una norma. Si en \mathbb{R}^m y \mathbb{R}^n usamos la norma euclideana, exprese la norma $N(A)$ es este caso.

9. Sea V un espacio con producto interno I, y sea N la norma correspondiente. Pruebe que $N(x+y) \cdot N(x-y) \leq N(x)^2 + N(y)^2$ y $4I(x,y) = N(x+y)^2 - N(x-y)^2$ (identidad de polarización) para todo $x, y \in V$.

10. Sea N una norma en un espacio vectorial V. Pruebe que existe un producto interno I en V tal que $N(v) = \sqrt{I(v,v)}$ para todo $v \in V$ (en este caso decimos que la norma proviene de un producto interno) si y sólo si se satisface la siguiente identidad:

\[N(v+w)^2 + N(v-w)^2 = 2N(v)^2 + 2N(w)^2\]

para todo $v, w \in V$ (identidad anterior es llamada identidad del paralelogramo).

11. Si en \mathbb{R}^m y \mathbb{R}^n usamos la la norma d_M. Encuentre la expresión de la norma $N(A)$ definida en $\mathbb{M}(m \times n, \mathbb{R})$ en este caso.

12. Describas las distancias en $\mathbb{M}(m \times n, \mathbb{R})$ inducidas por las normas definidas anteriormente.

13. Considere el espacio vectorial $V = \{f : f : [0,1] \rightarrow \mathbb{R} f continua\}$, dotado de la norma $||f|| = \sup\{|f(x)| : x \in [0,1]\}$.

 (a) Encuentre un par de funciones $f, g \in V$ tales que $||f+g||^2 + ||f-g||^2 \neq 2||f||^2 + 2||g||^2$.

 (b) Sea $(f_n)_{n \in \mathbb{N}}$ una sucesión en V. Pruebe que si $\lim_{n \to \infty} ||f_n|| = 0$ entonces $\lim_{n \to \infty} f_n(x) = 0$ para todo $x \in [0,1]$.
(c) Describa la bola unitaria en V con la distancia inducida por la norma anterior.

14. Pruebe que $F: \mathbb{R}^2 \to \mathbb{R}$ definida por $F(x, y) = \sqrt{(x-y)^2 + 3y^2}$ es una norma en \mathbb{R}^2. ¿Existe un producto interno I en \mathbb{R}^2 tal que $F = NI$? Describa la función distancia inducida por esta norma.

15. Sean \langle , \rangle_1 y \langle , \rangle_2 productos internos en un espacio vectorial V. Pruebe que $\langle , \rangle_1 + \langle , \rangle_2$ es también un producto interno en V. Describa la norma norma y la distancia que induce este producto interno.

16. Determine un producto interno I en \mathbb{R}^2 tal que $I((1, 0), (0, 1)) = 2$. ¿Cuál es la norma y la distancia inducida por este producto interno?

17. En \mathbb{R}^3 considere la aplicación $\langle , \rangle: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ definida por $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = 2x_1y_1 + x_1y_3 + x_3y_1 + x_2y_2 + x_3y_3$. Demuestre que este es un producto interno.

18. Sea $X =]0, 1[\subset \mathbb{R}$. Pruebe que $d(x, y) = |x^{-1} - y^{-1}|$ es una distancia en X.

19. Sea d una distancia en X. Pruebe que la función $d': X \times X \to \mathbb{R}$ definida por $d'(x, y) = d(x, y) / (1 + d(x, y))$ es una distancia en X.

20. Denote por $C^0([0, 1], \mathbb{R})$ el conjunto de las funciones continuas de $[0, 1]$ en \mathbb{R}. Pruebe que las funciones d_M y d_1 definidas como sigue:

$$d_M(f, g) = \sup \{|f(t) - g(t)| : t \in [0, 1]|$$
22. \[d_1(f, g) = \int_0^1 |f(t) - g(t)|\,dt \]

son funciones distancias en \(C^0([0,1], \mathbb{R}) \).

21. ¿Cuáles de las siguientes funciones son distancias en \(\mathbb{R} \)?

(a) \(d(x, y) = |x^2 - y^2| \),
(b) \(d(x, y) = |x^3 - y^3| \),
(c) \(d(x, y) = |x - y|^2 \),
(d) \(d(x, y) = e^{-|x-y|} \).

22. Sean \(d_i, \ i = 1, \ldots, n \), métricas en espacios vectoriales \(V_i \) \((i = 1, \ldots, n)\). Sobre \(V = V_1 \times \cdots \times V_n \) defina para \(x = (x_1, \ldots, x_n) \) e \(y = (y_1, \ldots, y_n) \) las funciones siguientes

\[
d_S(x, y) = \sum_{i=1}^n d_i(x, y), \\
d_e(x, y) = \left(\sum_{i=1}^n d_i(x, y)^2 \right)^{1/2}, \\

d_M(x, y) = \max\{d_i(x, y) : i = 1, \ldots, n\}.
\]

Pruebe que \(d_S, d_e, \) y \(d_M \) son funciones distancias sobre \(V \).

Pruebe además que esas funciones distancias son equivalentes.

23. Estudie y represente gráficamente en \(\mathbb{R}^2 \) la bola, el disco, y la esfera unitaria para las métricas \(d, d_M, \) y \(d_S \).

24. Sea \(\mathbb{M}(n \times n, \mathbb{R}) = \{ A = (a_{ij})_{i,j=1,\ldots,n} \in \mathbb{R} \} \) el espacio vectorial de las matrices de orden \(n \times n \) con coeficientes reales. Dadas \(A, B \in \mathbb{M}(n \times n, \mathbb{R}) \), defina \(\langle A, B \rangle = \sum_{i,j=1}^n a_{ij}b_{ij} \). Pruebe que
este es un producto interno en $M(n \times n, \mathbb{R})$ ¿Cuál es la norma y la distancia inducida por el producto interno anterior?

25. Usando el isomorfismo natural que existe entre los espacios vectoriales $L(\mathbb{R}^n, \mathbb{R}^n) = \{ L : \mathbb{R}^n \to \mathbb{R}^n : L \text{ lineal} \}$ y $M(n \times n, \mathbb{R})$ induzca un producto interno en $L(\mathbb{R}^n, \mathbb{R}^n)$. Describa explícitamente la norma y la distancia inducida por esta norma. Además, describa la bola unitaria en este caso.

26. En $M(n \times n, \mathbb{R})$ para $A, B \in M(n \times n, \mathbb{R})$, defina $\langle A, B \rangle = \text{traza}(AB^T)$, donde B^T es la matriz transpuesta de B. Pruebe que este es un producto interno en $M(n \times n, \mathbb{R})$. ¿Cuál es la norma y la distancia inducida por el producto interno anterior?

27. Pruebe que $H = \{(x_1, \ldots, x_n) : x_n > \alpha \}$ es un subconjunto abierto de \mathbb{R}^n. Calcule ∂H.

28. Sea $A \subset \mathbb{R}^n$ y $B(A : r)$ la unión de las bolas de centro $a \in A$ y radio r. Probar que si A es convexo también lo es $B(A; r)$. ¿Será cierto para la conexidad?

29. Denotemos por $S(a;r) = \{ z \in \mathbb{R}^n : ||z - a|| = r \}$ la esfera de centro a y radio r. Sean $x \in S(a;r)$ y $r > 0$ dados. Probar que existen $y \in B(a;r), z \notin B(a;r)$ tal que $||y-x|| < r$ y $||z-x|| < r$.

30. ¿Cuál es la frontera de la esfera $S(a;r)$ en \mathbb{R}^n?

31. Probar que la frontera de la bola abierta $B(a;r)$ es la esfera $S(a;r)$, esfera de centro en a, y radio $r > 0$.

32. Sea $A \subset \mathbb{R}^n$. Probar que A es cerrado si y sólo si $A = A'$.
33. Probar que $\text{Int}(A)$, el interior de un conjunto A, es siempre un conjunto abierto.

34. Calcule el producto interno asociado a las matrices positivas definidas siguiente

$$A = \begin{pmatrix} 3 & 8 \\ -2 & 3 \end{pmatrix} \quad \text{y} \quad A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

Calcule la norma asociada a el producto interno definido para cada caso por esas matrices.

35. Probar que todo conjunto cerrado contiene su frontera.

36. Construya dos métricas que no sean equivalentes en \mathbb{R}^n.

37. Grafique en \mathbb{R}^2 y \mathbb{R}^3 la bola unitaria centrada en el origen para dos métricas d_p distintas.

38. Pruebe las siguientes relaciones:

(a) $\text{Int}(\text{Int}(A)) = \text{Int}(A)$,

(b) $\text{Int}(A) = \mathbb{R}^n - (\mathbb{R}^n - A)$,

(c) $\text{Int}(\mathbb{R}^n - A) = \mathbb{R}^n - \overline{A}$.

39. Sea $A \in \mathbb{M}(n \times n, \mathbb{R})$. Decimos que A es ortogonal si $AA^T = I$, donde I denota la matriz identidad $n \times n$. Sea $O(n) = \{A \in \mathbb{M}(n \times n, \mathbb{R}) : AA^T = I\}$ el conjunto de las matrices ortogonales y sea $SO(n) = \{A \in O(n) : \det(A) = 1\}$. Pruebe que $O(2)$ consiste de todas las matrices de rotación y de reflección:

$$\text{rot}_\theta = \begin{pmatrix} \cos(\theta) & -\sen(\theta) \\ \sen(\theta) & \cos(\theta) \end{pmatrix}$$
y

\[
\mathbf{ref}_\theta = \begin{pmatrix}
\cos(\theta) & \sin(\theta) \\
\sin(\theta) & -\cos(\theta)
\end{pmatrix}
\]

y que \(SO(2) \) consiste de todas las matrices de rotación.

Finalmente, pruebe que \(SO(3) \) consiste de todas las matrices de rotación alrededor de todos los posibles ejes de rotación pasando a través del origen en \(\mathbb{R}^3 \).
Capítulo 2

Sucesiones en Espacios Vectoriales Normados

Una sucesión en un conjunto no vacío X es una función $x : \mathbb{N} \rightarrow X$. Es usual denotar el valor $x(k)$ de la sucesión x en el punto $k \in \mathbb{N}$ por x_k, es decir, $x(k) = x_k$, aquí seguimos la tradición y adoptamos esta notación. El valor x_k es llamado el k-ésimo término de la sucesión x. Otra notación usual, que también adoptamos es $x = (x_k)_{k \in \mathbb{N}}$, o simplemente $x = (x_k)$, para indicar la sucesión x.

Sea $x = (x_k)_{k \in \mathbb{N}}$ una sucesión en X. Una subsucesión de $(x_k)_{k \in \mathbb{N}}$ es la restricción de x a un subconjunto infinito $\mathbb{N}' \subset \mathbb{N}$, donde $\mathbb{N}' = \{k_1, k_2, \ldots, k_n, \ldots\}$ y su elementos satisfacen $k_1 < k_2 < \cdots < k_n < \cdots$. Usaremos la notación $\mathbb{N}' = \{k_1 < k_2 < \cdots < k_n < \cdots\}$.

La imagen de una sucesión $x = (x_k)_{k \in \mathbb{N}}$ en X, la denotaremos por $x(\mathbb{N}) = \{x_k\}_{k \in \mathbb{N}}$. (No confundir la sucesión $x = (x_k)_{k \in \mathbb{N}}$, la cual es una función, con su conjunto imagen o conjunto de valores $\{x_k\}_{k \in \mathbb{N}} \subset X$).

En lo que sigue V denota un espacio vectorial normado dotado con una norma N.
Definición 2.1 Decimos que una sucesión $x : \mathbb{N} \to V$ es acotada si el conjunto de valores $\{x_k\}_{k \in \mathbb{N}}$ es acotado, es decir, existe $r > 0$ tal que $N(x_k) \leq r$ para todo $k \in \mathbb{N}$.

Observación. En \mathbb{R}^n, una sucesión $x = (x_k)_{k \in \mathbb{N}}$ equivale a n sucesiones de números reales.

En efecto, para cada $k \in \mathbb{N}$ tenemos que $x(k) = (x_{k1}, x_{k2}, \ldots, x_{kn})$, donde $x_{ki} = \pi_i(x_k)$ y $\pi_i : \mathbb{R}^n \to \mathbb{R}$ es la aplicación lineal proyección en la i-ésima coordenada, dada por $\pi_i(v_1, \ldots, v_n) = v_i$. Las sucesiones $(x_{ki})_{k \in \mathbb{N}} (i = 1, \ldots, n)$ son llamadas sucesiones coordenadas de la sucesión $(x_k)_{k \in \mathbb{N}}$. Tenemos que una sucesión es acotada si, y sólo si, cada una se sus sucesiones coordenadas es acotada en \mathbb{R}.

Ahora definiremos para sucesiones uno de los conceptos más importantes en Análisis, no referimos la concepto de límite.

Definición 2.2 Sea $x = (x_k)_{k \in \mathbb{N}}$ una sucesión en V. Decimos que $(x_k)_{k \in \mathbb{N}}$ es convergente a un punto $a \in V$ si para cada $\varepsilon > 0$ dado, existe $k_0 \in \mathbb{N}$, tal que $k \geq k_0$ implica $N(x_k - a) < \varepsilon$, es decir, para todo $k \geq k_0$ se tiene que $x_k \in B(a, \varepsilon)$. En este caso, decimos que a es el límite de la sucesión $(x_k)_{k \in \mathbb{N}}$, y denotamos esto por $a = \lim_{k \to \infty} x_k$.

Observaciones

1. Desde la definición de convergencia de sucesiones se tiene que, $\lim_{k \to \infty} x_k = a$ si, y sólo si, $\lim_{k \to \infty} N(x_k - a) = 0$.

2. La definición de convergencia de sucesiones hace uso de una norma fijada en V.

3. Desde la observación anterior, en \mathbb{R}^n tenemos que una sucesión $x = (x_k)_{k \in \mathbb{N}}$ equivale a n sucesiones de números reales, pues para
cada \(k \in \mathbb{N} \) tenemos que \(x(k) = (x_{k1}, x_{k2}, \ldots, x_{kn}) \), donde \(x_{ki} = \pi_i(x_k) \) y \(\pi_i : \mathbb{R}^n \to \mathbb{R} \) es la aplicación lineal proyección en la \(i \)-ésima coordenada. Luego, la sucesión \(x = (x_k)_{k \in \mathbb{N}} \) es convergente si y sólo si las sucesiones \((x_{ki})_{k \in \mathbb{N}} \) \((i = 1, \ldots, n) \) son convergentes, y por lo tanto, podemos aplicar todos los criterios que conocemos de análisis en una variable para estudiar la convergencia de las sucesiones \((x_{ki})_{k \in \mathbb{N}} \) \((i = 1, \ldots, n) \)

Proposición 2.1 Sea \((x_k)_{k \in \mathbb{N}} \) una sucesión convergente en \(V \). Entonces \(\{x_k : k \in \mathbb{N}\} \) es acotado.

Demostración. Sea \(a = \lim_{k \to \infty} x_k \). Entonces existe \(k_0 \in \mathbb{N} \) tal que para todo \(k \geq k_0 \), se tiene que \(x_k \in B(a, 1) \). Como el conjunto \(\{x_k : 1 \leq k < k_0\} \) es finito, se tiene que \(M = \max\{N(x_k - a) : 1 \leq k < k_0\} \) es finito, por lo tanto \(\{x_k : a \leq k < k_0\} \subset B(0, M) \). Ahora, sea \(c = \max\{M, \varepsilon\} \), se tiene que \(\{x_k : k \in \mathbb{N}\} \subset B(a, c) \). Lo que completa la prueba.

Observación. La recíproca de la proposición anterior no es verdadera, pues tomando la sucesión \((x_k)_{k \in \mathbb{N}} \) en \(\mathbb{R} \), dada por \(x_k = (-1)^k \) se tiene que \(|x_k| \leq 1 \), pero ella no es convergente.

Proposición 2.2 Si \((x_k)_{k \in \mathbb{N}} \) es una sucesión convergente en \(V \). Entonces toda subsucesión \((x_k)_{i \in \mathbb{N}} \) de \((x_k)_{k \in \mathbb{N}} \) es convergente. Además, si \(\lim_{k \to \infty} x_k = b \) entonces \(\lim_{i \to \infty} x_{k_i} = b \).

Demostración. Sea \(b = \lim_{k \to \infty} x_k \), entonces dado \(\varepsilon > 0 \) existe \(k_0 \in \mathbb{N} \) tal que \(k \geq k_0 \) implica \(x_k \in B(b, \varepsilon) \). Como \(\mathbb{N}' = \{k_1 < k_2 < \cdots < k_j < \cdots\} \subset \mathbb{N} \), se sigue que existe un índice, digamos \(j_0 \in \mathbb{N} \) tal que \(k_{j_0} \geq k_0 \). Luego, \(k_j \geq k_0 \) para todo \(j \geq j_0 \), y por lo tanto \(x_{k_j} \in B(b, \varepsilon) \)
para todo $j \geq j_0$, es decir, $(x_{k_j})_{k_j \in \mathbb{N}'}$ es convergente, y $\lim_{k_j \to \infty} x_{k_j} = b$, y la prueba está completa.

Proposición 2.3 Sea $(x_k)_{k \in \mathbb{N}}$ una sucesión en V. Si $(x_k)_{k \in \mathbb{N}}$ es convergente entonces su límite es único.

Demostración. Supongamos que $(x_k)_{k \in \mathbb{N}}$ es convergente y que posee dos límites, digamos a y b. Dado $\varepsilon > 0$, existen $k_1, k_2 \in \mathbb{N}$ tales que si $k \geq k_1$ entonces $N(x_k - a) < \varepsilon$ y si $k \geq k_2$ entonces $N(x_k - b) < \varepsilon$. Tenemos $N(a - b) \leq N(a - x_k) + N(x_k - b)$, luego tomando $k_0 = \max\{k_1, k_2\}$ se tiene que si $k \geq k_0$ entonces $N(a - b) \leq 2\varepsilon$. Como $\varepsilon > 0$ es arbitrario se sigue que $N(a - b) = 0$, de donde $a = b$, y la prueba está completa.

Definición 2.3 Decimos que dos normas N_1 y N_2 en V son equivalentes si, existen constantes $C_1 > 0$ y $C_2 > 0$ tales que

$$C_1 N_1(x) \leq N_2(x) \leq C_2 N_1(x), \quad \text{para todo } x \in V.$$

Observación. Desde la definición de convergencia de sucesiones, se tiene que si N_1 y N_2 son dos normas equivalentes en V entonces una sucesión es convergente respecto de la norma N_1 si, y sólo si, es convergente respecto a N_2.

Proposición 2.4 Sea V un espacio vectorial con producto interno I. Sean $(x_k)_{k \in \mathbb{N}}$ e $(y_k)_{k \in \mathbb{N}}$ sucesiones en V, y sea $(\alpha_k)_{k \in \mathbb{N}}$ una sucesión de números reales. Si existen $a = \lim_{k \to \infty} x_k$, $b = \lim_{k \to \infty} y_k$, y $\alpha = \lim_{k \to \infty} \alpha_k$ entonces las sucesiones $(s_k)_{k \in \mathbb{N}}$, $(t_k)_{k \in \mathbb{N}}$, $(u_k)_{k \in \mathbb{N}}$, y $(w_k)_{k \in \mathbb{N}}$, definidas por $s_k = x_k + y_k$, $t_k = \alpha_k x_k$, $u_k = I(x_k, y_k)$, y $w_k = N_I(x_k)$ son convergentes. Además,
\[a) \lim_{k \to \infty} x_k + y_k = a + b, \]
\[b) \lim_{k \to \infty} \alpha_k x_k = \alpha a, \]
\[c) \lim_{k \to \infty} I(x_k, y_k) = I(a, b), \]
\[d) \lim_{k \to \infty} N(x_k) = N(a). \]

Demostración. Sea \(\varepsilon > 0 \) dado. Entonces existe \(k_0 \in \mathbb{N} \) tal que \(N(x_k - a) < \varepsilon, \ N(y_k - b) < \varepsilon, \ y \ |\alpha_k - \alpha| < \varepsilon \) para todo \(k \geq k_0 \).

a) Se tiene que \(N((x_k + y_k) - (a + b)) \leq N(x_k - a) + N(y_k - b) \). Luego, si \(k \geq k_0 \) entonces \(N((x_k + y_k) - (a + b)) \leq 2\varepsilon \), por lo tanto \((s_k)_{k \in \mathbb{N}}\) es convergente y \(\lim_{k \to \infty} x_k + y_k = a + b \).

b) Se tiene que \(N(\alpha_k x_k - \alpha a) = N(\alpha_k x_k - \alpha_k a + \alpha_k a - \alpha a) \leq |\alpha_k|N(x_k - a) + |\alpha_k - \alpha|N(a) \). Sea \(M > 0 \) tal que \(|\alpha_k| \leq M \) para todo \(k \in \mathbb{N} \). Ahora, si \(k \geq k_0 \) entonces \(N(\alpha_k x_k - \alpha a) < M\varepsilon + \varepsilon N(a) = (M + N(a))\varepsilon \), de donde \((\alpha_k x_k)_{k \in \mathbb{N}}\) es convergente y \(\lim_{k \to \infty} \alpha_k x_k = \alpha a \).

c) Para mostrar esta parte, vemos que desde la desigualdad de Cauchy–Schwartz, tenemos que \(|I(x, y)| \leq N_I(x)N_I(y) \). Ahora, \(|I(x_k, y_k) - I(a, b)| = |I(x_k, y_k) - I(x_k, b) + I(x_k, b) - I(a, b)| = |I(x_k, y_k - b) + I(x_k - a, b)| \leq N_I(x_k)N_I(y_k - b) + N_I(x_k - a)N_I(b) \). Sea \(M > 0 \) tal que \(N_I(x_k) \leq M \) para todo \(k \in \mathbb{N} \). Luego, si \(k \geq k_0 \) entonces \(|I(x_k, y_k) - I(a, b)| \leq M\varepsilon + \varepsilon N_I(b) = (M + N_I(b))\varepsilon \), de donde se sigue el resultado.

d) Se tiene, por definición, que \(N_I(x) = \sqrt{I(x, x)} \). Luego, \(N_I(x_k) = \sqrt{I(x_k, x_k)} \) y como \((I(x_k, x_k))_{k \in \mathbb{N}}\) es una sucesión convergente de números reales no negativos, \(\lim_{k \to \infty} \sqrt{I(x_k, x_k)} = \sqrt{\lim_{k \to \infty} I(x_k, x_k)} = \sqrt{I(a, a)} = N_I(a) \), como queríamos probar.
Nota. La existencia de \(\lim_{k \to \infty} x_k + y_k \) no implica la existencia de los límites \(\lim_{k \to \infty} x_k \) y \(\lim_{k \to \infty} y_k \). Por ejemplo consideremos las sucesiones \((x_k)_{k \in \mathbb{N}} \) e \((y_k)_{k \in \mathbb{N}} \), cuyos términos \(k \)-ésimos son \(x_k = (-1)^k \) y \(y_k = (-1)^{k+1} \). Es claro que ninguna de ellas tiene límite, pero \(x_k + y_k = 0 \) para todo \(k \in \mathbb{N} \). Observaciones análogas se aplican a las otras sucesiones de la proposición anterior. La construcción de ejemplos se deja a cargo del lector.

Teorema 2.1 (Bolzano–Weierstrass) Toda sucesión acotada en \(\mathbb{R}^n \) posee una subsucesión convergente.

Demostración. Sea \((x_k)_{k \in \mathbb{N}} \) una sucesión acotada en \(\mathbb{R}^n \), y sean \((x_{ki})_{k \in \mathbb{N}} \) (\(i = 1, \ldots, n \)) las sucesiones coordenadas de \((x_k)_{k \in \mathbb{N}} \). Como \((x_k)_{k \in \mathbb{N}} \) es acotada, se tiene que cada sucesión coordenada es acotada. Ahora, como el Teorema de Bolzano–Weierstrass es válido para sucesiones de números reales, se tiene que \((x_{k1})_{k \in \mathbb{N}} \) posee una subsucesión convergente, es decir, existe un conjunto infinito \(\mathbb{N}_1 \subset \mathbb{N} \) y un número real \(a_1 \) tal que \(\lim_{k \in \mathbb{N}_1} x_{k1} = a_1 \) (aquí, la notación \(\lim_{k \in \mathbb{N}_1} x_{k1} \) significa simplemente el límite de la subsucesión \((x_{k1})_{k \in \mathbb{N}_1} \)). Ahora, como \((x_{k2})_{k \in \mathbb{N}} \) es acotada, existen un conjunto infinito \(\mathbb{N}_2 \subset \mathbb{N}_1 \) y un número real \(a_2 \) tal que \(\lim_{k \in \mathbb{N}_2} x_{k2} = a_2 \). Repitiendo este argumento, encontramos conjuntos infinitos \(\mathbb{N}_n \subset \mathbb{N}_{n-1} \subset \cdots \subset \mathbb{N}_2 \subset \mathbb{N}_1 \subset \mathbb{N} \) y números reales \(a_1, \ldots, a_n \) tales que \(\lim_{k \in \mathbb{N}_j} x_{kj} = a_j \) para \(j = 1, \ldots, n \). Sea \(a = (a_1, \ldots, a_n) \). Entonces \(\lim_{k \in \mathbb{N}_n} x_k = a \), como queríamos probar.

Definición 2.4 Sea \((x_k)_{k \in \mathbb{N}} \) una sucesión en \(V \). Decimos que un punto \(a \in V \) es un punto de adherencia de \(\{x_k : k \in \mathbb{N}\} \) si, existe una subsucesión convergente \((x_{kj})_{j \in \mathbb{N}} \) de \((x_k)_{k \in \mathbb{N}} \) con \(a = \lim_{j \to \infty} x_{kj} \).
Notas.

1. El Teorema de Bolzano–Weierstrass dice que el conjunto de puntos de adherencia de una sucesión acotada en \mathbb{R}^n es no vacío.

2. Sea $(x_k)_{k \in \mathbb{N}}$ una sucesión en V. Si $(x_k)_{k \in \mathbb{N}}$ es convergente entonces tiene un único punto de adherencia, y este es $\lim_{k \to \infty} x_k$.

Proposición 2.5 Sea $(x_k)_{k \in \mathbb{N}}$ una sucesión en V. Entonces $a \in V$ es un punto de adherencia de $(x_k)_{k \in \mathbb{N}}$ si, y sólo si, para cada $\varepsilon > 0$ dado, la bola $B(a, \varepsilon)$ contiene elementos de $\{x_k : k \in \mathbb{N}\}$ con índices arbitrariamente grandes.

Demostración. Si $a \in V$ es un punto de adherencia de $(x_k)_{k \in \mathbb{N}}$ entonces existe una subsucesión $(x_{k_j})_{j \in \mathbb{N}}$ de $(x_k)_{k \in \mathbb{N}}$ con $a = \lim_{j \to \infty} x_{k_j}$, de donde para cada $\varepsilon > 0$ dado, existe $j_0 \in \mathbb{N}$ tal que $j \geq j_0$ implica $x_{k_j} \in B(a, \varepsilon)$.

Recíprocamente, existe $k_1 \in \mathbb{N}$ tal que $N(x_{k_1} - a) < 1$; existe $k_2 > k_1$ tal que $N(x_{k_2} - a) < 1/2$, y así sucesivamente, existe $k_j > k_{j-1}$ tal que $N(x_{k_j} - a) < 1/j$. Luego, la subsucesión $(x_{k_j})_{j \in \mathbb{N}}$ de $(x_k)_{k \in \mathbb{N}}$, satisface $\lim_{j \to \infty} x_{k_j} = a$. Esto completa la prueba.

De lo anterior, tenemos el siguiente teorema.

Teorema 2.2 Sea $(x_k)_{k \in \mathbb{N}}$ una sucesión acotada en \mathbb{R}^n. Entonces $(x_k)_{k \in \mathbb{N}}$ es convergente si, y sólo si, tiene un único punto de adherencia.

Demostración. Si la sucesión es convergente entonces ella tiene un único punto de adherencia.

Recíprocamente, sea $a \in \mathbb{R}^n$ el único punto de adherencia de $(x_k)_{k \in \mathbb{N}}$. Afirmamos que $a = \lim_{k \to \infty} x_k$.
Si no, entonces existe $\varepsilon > 0$ tal que el conjunto $N_1 = \{ k \in \mathbb{N} : x_k \notin B(a, \varepsilon) \}$ es infinito. Ahora, como la sucesión $(x_k)_{k \in \mathbb{N}}$ es acotada, se sigue que la sucesión $(x_k)_{k \in N_1}$ también es acotada, luego por el Teorema de Bolzano–Weierstrass ella posee una subsucesión $(x_k)_{k \in N_2}$ converge (N_2 \subset N_1 infinito). Sea $b = \lim_{k \to \infty} x_k$.

Como para $k \in N_2$ se tiene que $N(x_k-a) \geq \varepsilon$ se sigue que $N(b-a) \geq \varepsilon$. Luego, $b \neq a$, por lo tanto $(x_k)_{k \in \mathbb{N}}$ tiene dos puntos distintos de adherencia. Esto es una contradicción, y la prueba del teorema está completa.

Definición 2.5 Sea $(x_k)_{k \in \mathbb{N}}$ una sucesión en V. Decimos que $(x_k)_{k \in \mathbb{N}}$ es una sucesión de Cauchy si, para cada $\varepsilon > 0$ existe $k_0 \in \mathbb{N}$ tal que si $r, \ell \geq k_0$ entonces $N(x_r-x_\ell) < \varepsilon$.

Teorema 2.3 Toda sucesión convergente es de Cauchy.

Demostración. Sea $(x_k)_{k \in \mathbb{N}}$ una sucesión convergente en V, y sea $a = \lim_{k \to \infty} x_k$. Entonces dado $\varepsilon > 0$ existen $k_1, k_2 \in \mathbb{N}$ tales que $N(x_k-a) < \varepsilon/2$ para $k \geq k_1$ y $N(x_k-a) < \varepsilon/2$ para $k \geq k_2$. Sea $k_0 = \max\{k_1, k_2\}$. Si $r, \ell \geq k_0$ entonces $N(x_r-x_\ell) \leq N(x_r-a) + N(x_\ell-a) < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

Nota. Si $(x_k)_{k \in \mathbb{N}}$ es una sucesión de Cauchy en V entonces no necesariamente ella es convergente, por ejemplo considere la sucesión de aproximaciones decimales con un, dos, tres, ..., dígitos a $\sqrt{2}$. Esta es una sucesión de números racionales, la cual es de Cauchy, pero no convergente en \mathbb{Q}.

Definición 2.6 Decimos que un espacio vectorial normado es completo si cada sucesión de Cauchy en V es convergente.
Teorema 2.4 (completitud de \mathbb{R}^n) El espacio vectorial normado \mathbb{R}^n es completo.

Demostración. Sea $(x_k)_{k \in \mathbb{N}}$ una sucesión de Cauchy en \mathbb{R}^n, entonces sus sucesiones coordenadas $(x_{ki})_{k \in \mathbb{N}}$ ($i = 1, \ldots, n$) son sucesiones de Cauchy en \mathbb{R}. Ahora, como \mathbb{R} es completo, se tiene que existen números reales a_1, \ldots, a_n tales que $\lim_{k \to \infty} x_{ki} = a_i$ para $i = 1, \ldots, n$. Sea $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$. Es claro que $\lim_{k \to \infty} x_k = a$. Lo que completa la prueba.

2.1 Puntos de Acumulación

Sea V un espacio vectorial normado con una norma N fijada.

Definición 2.7 Sea $X \subset V$. Decimos que $a \in V$ es un punto de acumulación de X si toda bola abierta de centro en a contiene puntos de X diferentes de a, es decir, para todo $\varepsilon > 0$ dado, existe $x \in X$, con $x \neq a$ tal que $0 < N(x - a) < \varepsilon$.

Ejemplos.

1. Sea $X = B(a, r)$ entonces todo punto de $B[a, r]$ es punto de acumulación de $B(a, r)$.

2. Sea $X = \{1/n : n \in \mathbb{N}\} \subset \mathbb{R}$. El único punto de acumulación de X es 0.

En efecto, es claro que ningún punto $1/n$ de X es punto de acumulación de X, pues tomando $\varepsilon = \frac{1}{2} \frac{1}{n+1} - \frac{1}{n}$ se tiene que $B(\frac{1}{n}, \varepsilon) \cap X = \{\frac{1}{n}\}$. Por otra parte, para cada $\varepsilon > 0$ se tiene que $B(0, \varepsilon)$ contiene infinitos puntos, pues por la Propiedad Arquimedeano de los números reales, existe $n_\varepsilon \in \mathbb{N}$ tal que $n_\varepsilon \varepsilon > 1$,
es decir, $\frac{1}{n_{\varepsilon}} < \varepsilon$, y por lo tanto todo $m \in \mathbb{N}$ con $m \geq n_{\varepsilon}$, satisface $\frac{1}{m} < \varepsilon$, luego $B(0, \varepsilon) \cap X = \{ \frac{1}{n} : n \geq n_{\varepsilon} \}$.

El conjunto de puntos de acumulación de un conjunto $X \subset V$ se denota por X', y es llamado conjunto derivado de X.

Proposición 2.6 Sean $X \subset V$ y $a \in V$. Entonces las siguientes afirmaciones son equivalentes:

1) a es un punto de acumulación de X,

2) existe una sucesión $(x_k)_{k \in \mathbb{N}}$ de puntos de X, con $\lim_{k \to \infty} x_k = a$ y $x_k \neq a$ para todo $k \in \mathbb{N}$,

3) toda bola abierta de centro en a contiene infinitos puntos de X, diferentes de a.

Demostración. 1) \Rightarrow 2). Como $a \in V$ es un punto de acumulación de X, se sigue que para cada $k \in \mathbb{N}$ existe un punto $x_k \in X$, con $x_k \neq a$, tal que $0 < N(x_k - a) < 1/k$. de aquí es claro que la sucesión $(x_k)_{k \in \mathbb{N}}$ de puntos de X satisface $\lim_{k \to \infty} x_k = a$, y $x_k \neq a$ para todo $k \in \mathbb{N}$.

2) \Rightarrow 3). Sea $(x_k)_{k \in \mathbb{N}}$ una sucesión, con $x_k \in X$, $x_k \neq a$ para todo $k \in \mathbb{N}$, y $a = \lim_{k \to \infty} x_k$. Entonces para cualquier $k_0 \in \mathbb{N}$ el conjunto $\{x_k : k \geq k_0\}$ es infinito, si no, existiría un elemento, digamos x_k que se repitiría infinitas veces y esto nos proporciona una subsucesión constante, luego convergente con límite distinto de a.

3) \Rightarrow 1). Inmediata.

Corolario 2.5 Si $X' \neq \emptyset$ entonces X es infinito.
Demuestra. Inmediata.

Nota. Se sigue del Corolario que si X es finito entonces $X' = \emptyset$. La recíproca es falsa, por ejemplo consideremos el conjunto $Z \subset \mathbb{R}$, se tiene que $Z' = \emptyset$, pero claramente este conjunto no es finito.

En \mathbb{R}^n, por el Teorema de Bolzano–Weierstrass tenemos el siguiente teorema.

Teorema 2.6 Si $X \subset \mathbb{R}^n$ es infinito y acotado entonces $X' \neq \emptyset$.

Demuestra. Como X es infinito, este contiene un conjunto numerable infinito de puntos distintos $\{x_1, x_2, \ldots, x_k, \ldots\}$. De este modo obtenemos una sucesión $(x_k)_{k \in \mathbb{N}}$, con $x_k \in X$ para todo $k \in \mathbb{N}$. Ahora, como X es acotado se sigue que la sucesión $(x_k)_{k \in \mathbb{N}}$ es acotada, y por el Teorema de Bolzano–Weierstrass ella posee una subsucesión $(x_{k_j})_{j \in \mathbb{N}}$ convergente a algún punto $a \in \mathbb{R}^n$. Finalmente, como los términos de la sucesión $(x_{k_j})_{j \in \mathbb{N}}$ son distintos dos a dos, se sigue que a lo más uno de ellos podría ser igual a a, eliminando ese término, si existe, obtenemos una sucesión $(\tilde{x}_{k_j})_{j \in \mathbb{N}}$ de elementos de X todos distintos de a, con $\lim_{k \to \infty} \tilde{x}_{k_j} = a$.

Definición 2.8 Decimos que $a \in X$ es un punto aislado de X si, existe $\varepsilon > 0$ tal que $B(a, \varepsilon) \cap X = \{a\}$, es decir, a no es punto de acumulación de X.

Si todo punto de X es aislado, decimos que X es discreto. Por ejemplo, $\mathbb{Z} \subset \mathbb{R}$ es discreto, y en consecuencia $\mathbb{Z}^n \subset \mathbb{R}^n$ es discreto.
2.2 Caracterización de los Conjuntos Cerrados

Hemos definido un conjunto cerrado como el complemento de un conjunto abierto, ahora daremos una caracterización de los conjuntos cerrados en términos de sucesiones.

Definición 2.9 Sea $X \subset V$. La clausura de X es el conjunto de sus puntos adherentes, y se denota por \overline{X} o clausura(X).

Desde la definición, tenemos que $a \notin \overline{X}$ si, y sólo si, existe $\varepsilon > 0$ tal que $B(a, \varepsilon) \cap X = \emptyset$.

Sea $O \subset V$ un conjunto abierto, y sea $a \in O$ entonces existe $\varepsilon > 0$ tal que $B(a, \varepsilon) \subset O$, y como cada bola abierta es un conjunto abierto, tenemos:

a) $a \in \overline{X}$ si, y sólo si, para todo conjunto abierto $O \subset V$, con $a \in O$, se tiene que $X \cap O \neq \emptyset$.

b) $a \notin \overline{X}$ si, y sólo si, existe un conjunto abierto $O \subset V$, con $a \in O$, tal que $X \cap O = \emptyset$.

Ejemplo. Sea $\mathbb{Q}^n \subset \mathbb{R}^n$ el conjunto de puntos de \mathbb{R}^n con todas sus coordenadas racionales, entonces $\overline{\mathbb{Q}^n} = \mathbb{R}^n$.

Tenemos la siguiente caracterización de los conjuntos cerrados.

Teorema 2.7 Sea $X \subset V$. Entonces X es cerrado si, y sólo si, $X = \overline{X}$.

Demostración. Si $X \subset V$ es cerrado, entonces $O = V - X$ es un conjunto abierto. Luego, si $y \notin X$ entonces $y \in O$, y como O es abierto, existe $\varepsilon > 0$ tal que $B(y, \varepsilon) \subset O$, por lo tanto $B(y, \varepsilon) \cap X =$
\(\emptyset \), de donde y no es un punto adherente de \(X \). Luego, todo punto adherente de \(X \) debe pertenecer a \(X \), esto es, \(X \subset X \), y como es claro que \(X \subset X \), se tiene que \(X = X \).

Recíprocamente, supongamos que \(X = X \). Sea \(O = V - X \), entonces para todo \(b \in O \) existe \(\varepsilon > 0 \) tal que \(B(b, \varepsilon) \cap X = \emptyset \). Luego, si \(x \in B(b, \varepsilon) \) se tiene que \(B(b, \varepsilon) \) es un conjunto abierto que contiene a \(x \), y es disjunto de \(X \). Luego, \(B(b, \varepsilon) \subset V - X \), es decir, \(O = V - X \) es un conjunto abierto, y por lo tanto \(X \) es cerrado.

Corolario 2.8 La clausura de un conjunto cerrado es un conjunto cerrado.

Demostración. Si \(X \subset V \) es un conjunto cerrado entonces \(X = X \). Luego, \(X \) es un conjunto cerrado.

Nota. El corolario arriba nos dice que \(X = X \).

Corolario 2.9 Sea \(X \subset V \). Entonces \(X \) es cerrado si, y sólo si, para cada sucesión convergente \((x_k)_{k \in \mathbb{N}} \), con \(x_k \in X \) para todo \(k \in \mathbb{N} \), se tiene que \(\lim_{k \to \infty} x_k \in X \).

Demostración. Si \(X \subset V \) es cerrado entonces \(X = X \). Luego, si \((x_k)_{k \in \mathbb{N}} \) es una sucesión convergente de elementos de \(X \) entonces \(a = \lim_{k \to \infty} x_k \) es un elemento de \(X = X \).

Recíprocamente, es claro que \(X \subset X \). Ahora, si \(a \notin X \) entonces existe una sucesión de puntos \(x_k \in X \), con \(x_k \neq a \) para todo \(k \in \mathbb{N} \) y \(a = \lim_{k \to \infty} x_k \), como por hipótesis se tiene que \(\lim_{k \to \infty} x_k \in X \), se sigue que \(a \in X \), es decir, \(X \subset X \).

Nota. Es claro que si \(X \subset Y \subset V \) entonces \(X \subset Y \), de esto se sigue la siguiente proposición.
Proposición 2.7 Sea \(X \subseteq V \) un conjunto acotado, entonces \(X \) es un conjunto acotado.

Demostración. Como \(X \) es acotado, existe \(M > 0 \) tal que \(X \subseteq B[0, M] \). Como \(B[0, M] \) es un conjunto cerrado se sigue que \(X \subseteq \overline{B[0, M]} = B[0, M] \), esto es, \(X \) es acotado.

Desde la definición de punto frontera de un conjunto \(X \subseteq V \), tenemos que \(a \in \text{Fr}(X) \) si, y sólo si, \(a \) es adherente a \(X \) y a \(V \setminus X \), es decir, \(\text{Fr}(X) = \overline{X} \cap \overline{V \setminus X} \). En particular, \(\text{Fr}(X) \) es un conjunto cerrado.

Del mismo modo como definimos conjunto abierto relativo a un conjunto \(X \subseteq V \), definimos el concepto de conjunto cerrado relativo a \(X \), diciendo que \(C \subseteq X \) es cerrado en \(X \) si existe un conjunto cerrado \(F \subseteq V \) tal que \(C = F \cap X \). De modo análogo al caso de conjuntos abiertos relativos, se prueba que:

a) \(\emptyset, X \) son conjuntos cerrados relativos a \(X \),

b) si \(C_1, C_2 \subseteq X \) son conjuntos relativos a \(X \), entonces \(C_1 \cup C_2 \) es un conjunto cerrado relativo a \(X \),

c) si \(\{C_{\lambda} : \lambda \in \Lambda\} \) es una colección de conjuntos \(C_{\lambda} \subseteq X \), cerrados relativos a \(X \), entonces \(\bigcap_{\lambda \in \Lambda} C_{\lambda} \) es un conjunto cerrado relativo a \(X \).

Note que \(C \subseteq X \) es cerrado relativo a \(X \) si, y sólo si, \(X \setminus C \) es abierto relativo a \(X \). De esto podemos definir una topología para \(V \) tomando la colección de los conjuntos cerrados en \(V \), y una topología para \(X \subseteq V \) considerando la colección de los conjuntos cerrados relativos a \(X \).

Sean \(Y \subseteq X \subseteq V \). Definimos la clausura de \(Y \) relativo a \(X \) como siendo el conjunto \(\overline{Y} \cap X \), es decir, es el conjunto de puntos adherentes de \(Y \) que pertenecen a \(X \).
Definición 2.10 Sean $Y \subset X \subset V$. Decimos que Y es denso en X si $Y \cap X = X$, y decimos que Y es denso en V si $Y = V$.

Nota. Desde la definición, se tiene que $Y \subset X$ es denso en X si, y sólo si, para cada $x \in X$ y cada $\varepsilon > 0$, se tiene que $B(x, \varepsilon) \cap Y \neq \emptyset$.

Proposición 2.8 Todo subconjunto $X \subset \mathbb{R}^n$ contiene un subconjunto numerable el cual es denso en X

Demostración. Si X es finito o numerable, no hay que probar.

Supongamos que X es infinito no numerable. Sea $\mathcal{B} = \{B(q, r) : q \in \mathbb{Q}^n \text{ y } r \in \mathbb{Q}\}$, la colección de las bolas abiertas con centro en puntos con todas sus coordenadas racionales en \mathbb{R}^n y radio racional. Esta colección es numerable, es decir, podemos escribir $\mathcal{B} = \{B_1, B_2, \ldots\}$. Para cada $i \in \mathbb{N}$ elegimos un punto $x_i \in B_i \cap X$, caso esta intersección sea no vacía. Si $B_i \cap X = \emptyset$, tal x_i no existirá. Sea $E = \{x_i : i \in \mathbb{N}\}$ el conjunto obtenido de ese modo.

Ahora, sea $x \in X$ y $\varepsilon > 0$. Tenemos que existe $r > 0$ racional con $2r < \varepsilon$. Como \mathbb{Q}^n es denso en \mathbb{R}^n, existe $q \in \mathbb{Q}^n$ tal que $||x - q|| < r$. Luego, $x \in B(q,r) = B_i$ para algún $i \in \mathbb{N}$. Por lo tanto, $B_i \cap X \neq \emptyset$ y existe $x_i \in E$. Como $x, x_i \in B_i = B(q,r)$ se tiene que $||x - x_i|| \leq ||x - q|| + ||q - x_i|| < 2r < \varepsilon$. Luego, $B(x, \varepsilon) \cap X \neq \emptyset$, de donde E es denso en X, como queríamos probar.

2.3 Conjuntos Compactos

Definición 2.11 Sea $K \subset V$. Decimos que K es compacto si, toda sucesión $(x_k)_{k \in \mathbb{N}}$ en K posee una subsucesión convergente a un punto de K.
Nota. Desde el Teorema de Bolzano–Weierstrass, tenemos la siguiente caracterización de los conjuntos compactos en \mathbb{R}^n.

Teorema 2.10 Sea $K \subset \mathbb{R}^n$. Entonces K es compacto si, y sólo si, K es cerrado y acotado.

Demostración. Supongamos que $K \subset \mathbb{R}^n$ es cerrado y acotado, y sea $(x_k)_{k \in \mathbb{N}}$ una sucesión de puntos en K. Entonces $(x_k)_{k \in \mathbb{N}}$ es acotada, y por el Teorema de Bolzano–Weierstrass se sigue que $(x_k)_{k \in \mathbb{N}}$ posee una subsucesión convergente, digamos $(x_{k_j})_{j \in \mathbb{N}}$. Sea $a = \lim_{j \to \infty} x_{k_j}$. Como K es cerrado y $x_{k_j} \in K$ para todo $j \in \mathbb{N}$, se sigue que $a \in K$. Por lo tanto K es compacto.

Recíprocamente, supongamos que K es compacto y que $(x_k)_{k \in \mathbb{N}}$ es una sucesión de puntos en K, convergente a un punto a. Entonces $(x_k)_{k \in \mathbb{N}}$ posee una subsucesión $(x_{k_j})_{j \in \mathbb{N}}$ convergente a un punto de K, y como $\lim_{j \to \infty} x_{k_j} = \lim_{k \to \infty} x_k$, se sigue que $a = \lim_{k \to \infty} x_k \in K$, por lo tanto K es cerrado. Finalmente, si K no es acotado, entonces existe una sucesión $(x_k)_{k \in \mathbb{N}}$, con $x_k \in K$ para todo $k \in \mathbb{N}$, tal que $||x_k|| \geq k$. Esta sucesión no posee ninguna subsucesión convergente, luego K no es compacto, esta contradicción completa la prueba.

Tenemos la siguiente proposición, cuya prueba es inmediata a partir de la definición de conjunto compacto.

Proposición 2.9

a) Sean $K_1, \ldots, K_\ell \subset V$ conjuntos compactos, entonces $K_1 \cup \ldots \cup K_\ell$ es compacto.

b) Sea $\{K_\lambda : \lambda \in \Lambda\}$ una familia de subconjuntos compactos de V, entonces $\bigcap_{\lambda \in \Lambda} K_\lambda$ es un conjunto compacto.

c) Si $K_1 \subset V$ y $K_2 \subset W$ son conjuntos compactos, entonces $K_1 \times K_2 \subset V \times W$ es un conjunto compacto.
Demostración A cargo del lector.

Teorema 2.11 (Cantor) Si \{K_n : n \in \mathbb{N}\} es una sucesión decrecientes de conjuntos compactos no vacíos, es decir, \(K_1 \supset K_2 \supset \cdots \supset K_m \supset \cdots \) entonces la intersección \(K = \cap_{n \in \mathbb{N}} K_n \) es un conjunto compacto no vacío

Demostración. Por la proposición anterior \(K \) es compacto. Ahora, para cada \(k \in \mathbb{N} \) elegimos un punto \(x_k \in K_k \) y obtenemos un sucesión \((x_k)_{k \in \mathbb{N}} \). Como \(K_1 \supset K_2 \supset \cdots \) se sigue que \((x_k)_{k \in \mathbb{N}} \) es una sucesión en \(K_1 \), por lo tanto posee una subsucesión convergente \((x_{k_j})_{j \in \mathbb{N}} \), con
\[\lim_{j \to \infty} x_{k_j} = x \in K_1. \]

Dado \(n \in \mathbb{N} \) arbitrario, tenemos que \(x_{n_i} \in K_n \) para todo \(n_i > n \), luego \(x = \lim_{i \to \infty} x_{n_i} \in K_n \). Por lo tanto, el punto \(x \in K_n \) para todo \(n \in \mathbb{N} \), es decir, \(x \in K = \cap_{n \in \mathbb{N}} K_n \).

Definición 2.12 Sea \(X \subset V \). Decimos que una colección \(\{A_\alpha : \alpha \in \Gamma\} \) de subconjuntos de \(V \) es un cubrimiento de \(X \) si \(X \subset \cup_{\alpha \in \Gamma} A_\alpha \). Si cada \(A_\alpha \) es un conjunto abierto (cerrado, compacto, etc.) decimos que \(\{A_\alpha : \alpha \in \Gamma\} \) es un cubrimiento abierto (cerrado, compacto, etc.)

Sea \(\{A_\alpha : \alpha \in \Gamma\} \) un cubrimiento de \(X \subset V \), un subcubrimiento de \(X \) es una subcolección \(\{A_\alpha : \alpha \in \Gamma'\} \), donde \(\Gamma' \subset \Gamma \) y \(X \subset \cup_{\alpha \in \Gamma'} A_\alpha \). Decimos que el cubrimiento \(\{A_\alpha : \alpha \in \Gamma\} \) es numerable (respectivamente, finito) si \(\Gamma \) es numerable (respectivamente, finito).

Teorema 2.12 (Lindelöf) Sea \(X \subset \mathbb{R}^n \). Entonces todo cubrimiento abierto \(O = \{O_\lambda : \lambda \in \Lambda\} \) de \(X \) posee un subcubrimiento numerable.

Demostración. Sea \(E = \{x_1, x_2, \ldots\} \subset X \) un conjunto numerable y denso en \(X \). Sea \(B \) la colección de las bolas abiertas \(B(x, r) \) con
Sucesiones en Espacios Vectoriales Normados

centro en algún \(x \in E \) y radio \(r \) racional, y tales que cada una de
ellas está contenida en algún elemento de \(O_\lambda \) de \(O \), para algún \(\lambda \in \Lambda \).

Es claro que la colección \(B \) es numerable. Ahora, dado \(x \in X \), existe \(r > 0 \) racional tal que \(B(x, 2r) \subset O_\lambda \), y como \(E \) es denso en \(X \) existe \(x \in B(x_i, r) \). Sea \(y \in B(x_i, r) \) entonces \(||y - x_i|| < r \), luego \(||x - y|| < ||x - x_i|| + ||x_i - y|| < 2r \), por lo tanto \(y \in B(x, 2r) \subset O_\lambda \), de donde concluimos que \(B(x, r) \subset O_\lambda \). Tomando una enumeración \(B_1, B_2, \ldots, B_k, \ldots \) para las bolas en \(B \) y eligiendo para cada \(j \in \mathbb{N} \) un índice \(\lambda_j \in \Lambda \) tal que \(B_j \subset O_{\lambda_j} \) se tiene que \(X \subset O_{\lambda_1} \cup \cdots \cup O_{\lambda_n} \cup \cdots \).

Lo que completa la prueba.

Teorema 2.13 *(Borel–Lebesgue)* Sea \(K \subset \mathbb{R}^n \). Entonces \(K \) es compacto si, y sólo si, todo cubrimiento abierto \(O = \{ O_\lambda : \lambda \in \Lambda \} \) de \(K \) posee un subcubrimiento finito.

Demostración. Por el Teorema de Lindelöf obtenemos un subcubrimiento numerable \(\{ O_{\lambda_i} : i \in \mathbb{N} \} \) de \(K \). Sea \(K_i = K \cap (\mathbb{R}^n - (O_{\lambda_1} \cup \cdots \cup O_{\lambda_i})) \) para todo \(i \in \mathbb{N} \). Esto nos da una sucesión decreciente de conjuntos compactos \(K_1 \supset K_2 \supset \cdots \). Dado \(x \in K \) existe \(j \in \mathbb{N} \) tal que \(x \in O_{\lambda_j} \), luego \(x \notin K_j \), es decir, ningún punto de \(K \) está en todos los \(K_j \), de donde \(\bigcap_{j=1}^{\infty} K_j = \emptyset \). Luego, por el Teorema de Cantor, algún \(K_{i_0} = \emptyset \), esto significa que \(K \subset O_{\lambda_1} \cup \cdots \cup O_{\lambda_{i_0}} \).

Recíprocamente, es inmediato que la colección \(B_1 = \{ B(x, 1) : x \in K \} \) es un cubrimiento abierto de \(K \), por lo tanto posee un subcubrimiento finito, es decir, \(K \subset B(x_1, 1) \cup \cdots \cup B(x_j, 1) \). Luego, \(K \) está contenido en una unión finita de conjuntos acotados, y en consecuencia \(K \) es acotado. Ahora, si existe \(a \in \overline{K} - K \) entonces para cada \(i \in \mathbb{N} \), tomamos \(O_i = \mathbb{R}^n - B[a, 1/i] \). Si \(K \) no es cerrado entonces para todo \(x \in K \) se tiene que \(x \neq a \), luego \(||x - a|| > 1/n \) para algún \(n \in \mathbb{N} \), por
lo tanto \(x \in O_n \). De esto, tenemos que \(K \subset \bigcup_{n=1}^{\infty} O_n \), y existe entonces un subcubrimiento finito, \(K \subset O_{n_1} \cup \cdots \cup O_{n_j} \). Como \(O_1 \subset O_2 \subset \cdots \) toda unión de una colección de conjuntos \(O_k \) es igual al conjunto de índice mayor en la colección. Luego, \(K \subset O_i \), para algún \(i \in \mathbb{N} \), esto significa que la bola \(B(a, 1/i) \) no tiene puntos en común con \(K \), lo que contradice que \(a \in \overline{K} - K \), y la prueba del teorema está completa.

Observación. Desde el Teorema de Borel–Lebesgue podemos redefinir el concepto de conjunto compacto en \(\mathbb{R}^n \), diciendo que \(K \subset \mathbb{R}^n \) es compacto si, y sólo si, todo cubrimiento abierto de \(K \) posee un subcubrimiento finito. Esta es la defición general de conjunto compacto en topología.

2.4 Conexidad

Definición 2.13 Sea \(X \subset V \). Decimos que \(X \) es conexo si \(X = A \cup B \), con \(A \) y \(B \) conjuntos abiertos y disjuntos implica que \(A = \emptyset \) o \(B = \emptyset \).

Si \(X \) no es conexo, decimos que \(X \) es disconexo.

Ejemplos.

1. \(X = \mathbb{R} - \{0\} \) es disconexo en \(\mathbb{R} \), pues \(\mathbb{R} - \{0\} = \{x \in \mathbb{R} : x < 0\} \cup \{x \in \mathbb{R} : x > 0\} \) y ambos conjuntos son abiertos, disjuntos, y no vacíos.

2. Todo conjunto discreto es disconexo.

3. \(\mathbb{Q} \subset \mathbb{R} \) es disconexo, pues existe \(a \in \mathbb{R} - \mathbb{Q} \) y tenemos \(\mathbb{Q} = \{q \in \mathbb{Q} : q < a\} \cup \{q \in \mathbb{Q} : q > a\} \), y ambos conjuntos son abiertos, disjuntos, y no vacíos.
Para los subconjuntos conexos de \mathbb{R} tenemos la siguiente caracterización.

Teorema 2.14 Un subconjunto $X \subset \mathbb{R}$ es conexo si, y sólo si, es un intervalo (acotado o no).

Demostración. Ver [12].

Teorema 2.15 La unión de una familia de conjuntos conexos con un punto en común es un conjunto conexo.

Demostración. Sea $X = \bigcup_{\lambda \in \Lambda} C_{\lambda}$, donde cada C_{λ} es conexo, y existe $a \in V$ con $a \in C_{\lambda}$ para todo $\lambda \in \Lambda$. Si $X = A \cup B$ y $a \in A$, entonces para cada $\lambda \in \Lambda$, tenemos que $X_\lambda = X \cap C_{\lambda} = (A \cup B) \cap C_{\lambda} = (A \cap C_{\lambda}) \cup (B \cap C_{\lambda})$. Como C_{λ} es conexo y $a \in A$, se tiene que $B \cap C_{\lambda} = \emptyset$ para todo $\lambda \in \Lambda$. Luego, $B = B \cap X = B \cap (\bigcup_{\lambda \in \Lambda}) = \bigcup_{\lambda \in \Lambda} (B \cap C_{\lambda}) = \emptyset$.

Corolario 2.16 Sea $X \subset V$. Entonces X es conexo si, y sólo si, para cada $a, b \in X$ existe un conjunto conexo C_{ab}, con $a, b \in C_{ab}$ y $C_{ab} \subset X$.

Demostración (\implies) Obvia.

(\Longleftarrow) Fijemos $a \in X$. Entonces los conjuntos C_{ax}, con $x \in X$ son conexo, y $a \in C_{ax}$ para todo $x \in X$. Además, es claro que $\bigcup_{x \in X} C_{ax} = X$. Luego, por la proposición anterior, X es conexo.

2.5 Ejercicios

1. Sea $G = B(a; r) - \{a\}$. ¿Es G conexo?

2. Demuestre que $\{x\}$ es un conjunto conexo.
3. Demuestre que un convexo de \mathbb{R}^n, $|| \cdot ||$ es un conjunto conexo. Concluya que las bolas en espacios normados son conjuntos conexos.

4. Pruebe que la sucesión $(x_k)_{k \in \mathbb{N}}$ dada por $x_k = (-1)^k$ no es convergente.

5. Sean N_1 y N_2 dos normas equivalentes en un espacio vectorial normado V. Demuestre que una sucesión en V converge respecto a N_1 si, y sólo si, converge respecto a N_2.

6. Pruebe que si $X \subset V$ está contenido en una unión finita de conjuntos acotados en V entonces X es acotado.

7. ¿Será cierto que $\partial A = A' - A$?

8. Sean $A, B \subset V$, dos conjuntos compactos en el espacio vectorial normado V. Pruebe que el conjunto $A + B = \{a + b : a \in A, b \in B\}$ es un conjunto compacto.

9. Muestre con un ejemplo que \overline{A} compacto no implica A compacto. ¿Vale la recíproca?

10. Encuentre una métrica para la que un conjunto es compacto si y sólo si es finito.

11. Pruebe que el conjunto $K = \{ \frac{1}{n} : n = 1, 2, \ldots \} \cup \{0\}$ es compacto en \mathbb{R}.

12. Pruebe que la unión finita de subconjuntos compacto es un conjunto compacto.

13. Sea $I \subset \mathbb{R}$ un intervalo con extremos $a < b$. Sea $c \in I$ con $a < c < b$ Prueba que $I - \{c\}$ es disconexo. ¿Que ocurre si p
es un punto interior a un disco D en \mathbb{R}^2, es decir, es $D - \{p\}$
disconexo?

14. Sea $(x_n)_{n \in \mathbb{N}}$ una sucesión de Cauchy en \mathbb{R}^m. Pruebe que si
$(x_n)_{n \in \mathbb{N}}$ tiene alguna subsucesión convergente a $x \in \mathbb{R}^m$ entonces
$(x_n)_{n \in \mathbb{N}}$ es convergente y $\lim_{n \to \infty} x_n = x$.

15. Sea $(x_n)_{n \in \mathbb{N}}$ es una sucesión de Cauchy en \mathbb{R}^m. Si $(y_n)_{n \in \mathbb{N}}$ es otra
sucesión en \mathbb{R}^m verificando $d(x_n, y_n) < 1/n$ para todo $n \geq 1$,
pruebe que:

(a) $(y_n)_{n \in \mathbb{N}}$ también es de Cauchy,
(b) $\lim_{n \to \infty} x_n = x$ si, y sólo si, $\lim_{n \to \infty} y_n = x$.

16. Sea $b \in B(a; r)$ tal que $\lim_{k \to \infty} x_k = b$. Probar que existe $k_0 \in \mathbb{N}$
tal que $x_k \in B(a; r)$ para todo $k > k_0$.

17. Demuestre que si $\lim_{n \to \infty} x_n = 0$ en \mathbb{R}^n con una norma, entonces
$\lim_{n \to \infty} x_n = 0$ en \mathbb{R}^n con cualquier otra norma.

18. Calcule el interior, la adherencia y la acumulación con la métrica
euclídea de los conjuntos siguientes:

\[A = \{(x, y) : y = x^3\}, \]
\[B = [0, 1] \cup [9, 10[\]
\[C = \{(x, y, z) | x + y + z < 1\}. \]

19. Calcule los límites, si existen, de las sucesiones siguientes

(i) $x_n = (n \sin(1/n), \frac{n^2+1}{5n^2+10})$.
(ii) $x_n = (n \cos(1/n) - 1, \frac{n^3+6}{n^3+10}, \frac{1}{n+1})$.
Sean V y W espacios vectoriales normados, con normas N y \tilde{N}, respectivamente.

Definición 3.1 Sea $X \subset V$. Decimos que una aplicación $f : X \rightarrow W$ es continua en un punto $x_0 \in X$ si, para cada $\varepsilon > 0$ dado, existe $\delta > 0$ (que depende de ε y de x_0) tal que si $x \in X$, con $N(x-x_0) < \delta$, entonces $\tilde{N}(f(x) - f(x_0)) < \varepsilon$. Además, decimos que $f : X \rightarrow W$ es continua en X si es continua en cada punto $x \in X$.

En término de bolas abiertas, la continuidad de una aplicación $f : X \rightarrow W$ en un punto $x_0 \in X$ se traduce como sigue: para cada $\varepsilon > 0$ dado, existe $\delta > 0$ tal que $f(B(x_0, \delta) \cap X) \subset B(f(x_0), \varepsilon)$.

La continuidad es un concepto local, esto es, si cada $x_0 \in X$ es el centro de una bola abierta B tal que la restricción de la aplicación f a esa bola, $f/(X \cap B)$, es continua entonces f es continua en X.

Notas.

1. Sean N_1 y N_2 normas equivalentes en V, y sean \tilde{N}_1 y \tilde{N}_2 normas equivalentes en W. Entonces una aplicación $f : X \subset$
Aplicaciones Continuas

$V \to W$ es continua en relación a las normas N_1 de V y \tilde{N}_1 de W, si, y sólo si, es continua respecto a las normas N_2 de V y \tilde{N}_2 de W.

La prueba es fácil y se deja a cargo del lector.

2. Si $f : X \subset V \to W$ es continua. Entonces para cada $Y \subset X$ se tiene que $f/Y : Y \to W$ es continua. Esto es inmediato desde la definición.

3. Si x_0 es un punto aislado de $X \subset V$ entonces $f : X \to W$ es continua en x_0, pues en este caso, se tiene que dado $\varepsilon > 0$ entonces para cualquier $\delta > 0$ se satisface $x \in X$, $N_1(x - x_0) < \delta$ implica $N_2(f(x) - f(x_0)) = 0 < \varepsilon$.

Ejemplos.

1. Sea $f : \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x, y) = \begin{cases}
\frac{x^3 + y^3}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0).
\end{cases}$$

Entonces f es continua. Mostrar la continuidad de f fuera origen es fácil y se deja a cargo del lector. Ahora, sea $\varepsilon > 0$ dado, usando en \mathbb{R}^2 la norma euclidean, tenemos que $|x| \leq ||(x, y)|| = \sqrt{x^2 + y^2}$ y $|y| \leq ||(x, y)|| = \sqrt{x^2 + y^2}$, luego

$$|f(x, y)| \leq \frac{2||(x, y)||^3}{||(x, y)||^2} = 2||(x, y)||,$$

por lo tanto basta tomar $\delta = \varepsilon/2$ y tenemos que $||(x, y) - (0, 0)|| = ||(x, y)|| < \delta$ implica $|f(x, y)| \leq \varepsilon$.
2. Toda aplicación $f : X \subset V \to W$ es continua en un punto aislado de X.

En efecto, sea $a \in X$ un punto aislado. Entonces existe $\delta > 0$ tal que $B(a, \delta) \cap X = \{a\}$. Ahora, sea $\varepsilon > 0$, tomamos el número $\delta > 0$ anterior tenemos que $x \in X$, con $N(x - a) < \delta$ implica que $x = a$, por lo tanto $\tilde{N}(f(x) - f(x)) = 0 < \varepsilon$.

3. Aplicaciones Lipschitzianas. Sea $f : X \subset V \to W$. Decimos que f es una aplicación Lipschitz si, existe una constante $L_f \geq 0$ (constante de Lipschitz para f) tal que

$$\sup_{x,y \in X, x \neq y} \frac{\tilde{N}(f(x) - f(y))}{N(x - y)} \leq L_f.$$

Toda aplicación $f : X \subset V \to W$ Lipschitz es continua.

En efecto, sea $\varepsilon > 0$ dado, elegimos $\delta = \varepsilon / (L + 1)$, donde L es la constante de Lipschitz de f, se tiene que si $x \in X$, con $N(x - x_0) < \delta$, entonces $\tilde{N}(f(x) - f(x_0)) \leq LN(x - x_0) < L\frac{\varepsilon}{L+1} < \varepsilon$.

Una clase importante de aplicaciones lipschitzianas la constituyen las transformaciones lineales entre espacios euclideanos.

En \mathbb{R}^m y \mathbb{R}^n consideramos normas N_1 y N_2, respectivamente. Se define una norma N en el espacio vectorial $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n) = \{L : \mathbb{R}^m \to \mathbb{R}^n; L lineal\}$, subordinada a las norma N_1 y N_2, como

$$N(T) = \sup\{N_2(T(v)) : v \in \mathbb{R}^m, N_1(v) = 1\}$$

$$= \sup \left\{ \frac{N_2(T(v))}{N_1(v)} : v \in \mathbb{R}^m, v \neq 0 \right\}.$$

Es fácil ver que $N(T)$ define una norma en $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ (verificación rutinaria a cargo del lector). Desde la definición, se sigue
Aplicaciones Continuas

que $N_2((T(v)) \leq N(T)N_1(v)$ para todo $v \in \mathbb{R}^m$, con $v \neq 0$, y como esta desigualdad vale trivialmente para $v = 0$, se tiene que T es una aplicación Lipschitz con constante de Lipschitz igual a $N(T)$.

4. **Aplicaciones Bilineales.** Una aplicación $B : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^\ell$ es bilineal si es lineal en cada variable, es decir,

- $B(\alpha v_1 + v_2, w) = \alpha B(v_1, w) + B(v_2, w)$,
- $B(v, \beta w_1 + w_2) = \beta B(v, w_1) + B(v, w_2)$.

Sea $\mathcal{L}_2(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{R}^\ell)$ el conjunto de las aplicaciones bilineales de $\mathbb{R}^m \times \mathbb{R}^n$ en \mathbb{R}^ℓ. Es fácil ver que $\mathcal{L}_2(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{R}^\ell)$ es un espacio vectorial. Ahora, sean N_1, N_2, y N_3 normas en \mathbb{R}^m, \mathbb{R}^n, y \mathbb{R}^ℓ, respectivamente. En $\mathbb{R}^m \times \mathbb{R}^n$ consideramos la norma $N_0(v, w) = \max\{N_1(v), N_2(w)\}$. Definimos una norma N en $\mathcal{L}_2(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{R}^\ell)$, subordinada a las normas N_0 y N_3 por

$$N(B) = \sup\{N_3(B(v, w)) : (v, w) \in \mathbb{R}^m \times \mathbb{R}^n, N_1(v) = N_2(w) = 1\}$$

$$= \sup\left\{\frac{N_3(B(v, w))}{N_0(v, w)} : (v, w) \in \mathbb{R}^m \times \mathbb{R}^n, v \neq 0, w \neq 0\right\}.$$

Desde la definición, tenemos que $N_3(B(v, w)) \leq N(B)N_1(v)N_2(w)$ para todo $(v, w) \in \mathbb{R}^m \times \mathbb{R}^n$.

En efecto, la desigualdad es trivial si $v = 0$ o $w = 0$. Ahora, si $v \neq 0$ y $w \neq 0$, se tiene que los vectores $v_1 = v/N_1(v)$ y $w_1 = w/N_2(w)$ satisfacen $N_1(v_1) = N_2(w_1) = 1$, luego $N_0(v_1, w_1) \leq N(B)$, y de aquí se sigue que $N_1(B(v, w)) \leq N(B)N_1(v)N_2(w)$.
Ahora, sean \((v, w), (u, z) \in \mathbb{R}^m \times \mathbb{R}^n\). Tenemos \(B(v, w) - B(u, z) = B(v, w - z) + B(v - u, z)\), luego \(N(B(v, w) - B(u, z)) \leq N(B(v, w - z)) + N(B(v - u, z)) \leq N(B)(N_1(v)N_2(w - z) + N_1(v - u)N_2(z))\).

Consecuentemente, dado \(\varepsilon > 0\) tomamos \(\delta = \frac{\varepsilon}{2N(B)(M + 1)}\), donde \(M = \max\{N_1(v), N_2(w)\}\) y se tiene que \(N_0((v, w) - (u, z)) < \delta\) implica que \(N_1(v - u) < \delta\) y \(N_2(w - z) < \delta\). Luego,

\[
N(B(v, w) - B(u, z)) < N(B)(N_1(v)\delta + \delta N_2(z)) \\
= N(B)\delta(N_1(v) + N_2(z)) \\
\leq N(B)\delta 2M \\
= N(B)2M\frac{\varepsilon}{2N(B)(M + 1)} \\
< \varepsilon,
\]

es decir, \(N((v, w) - (u, z)) < \delta\) implica \(N(B(v, w) - B(u, z)) < \varepsilon\).

Por lo tanto, \(B\) es continua en cada punto \((v, w) \in \mathbb{R}^m \times \mathbb{R}^n\).

Algunas consecuencias

(a) Sea \(\lambda : \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^m\) la aplicación dada por \(\lambda(\alpha, v) = \alpha v\) (producto escalar). Claramente, \(\lambda\) es bilineal, por lo tanto continua.

(b) Sea \(I : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}\) un producto interno. Por definición, \(I\) es bilineal, por lo tanto continua.

Para los siguientes ejemplos, identificamos el espacio vectorial de las aplicaciones lineales de \(\mathbb{R}^m\) en \(\mathbb{R}^n\), el cual hemos denotado por \(\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)\) con el espacio vectorial \(\mathbb{R}^{mn}\).

(c) Sea \(\text{eval} : \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n) \times \mathbb{R}^m \to \mathbb{R}^n\) la aplicación dada por \(\text{eval}(L, x) = L(x)\), evaluación de \(L\) en \(x\). Es claro que \(\text{eval}\) es bilineal, por lo tanto continua.
(d) Sea \(\text{comp} : \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n) \times \mathcal{L}(\mathbb{R}^p, \mathbb{R}^m) \to \mathcal{L}(\mathbb{R}^p, \mathbb{R}^n) \) la aplicación dada por \(\text{comp}(L, T) = T \circ L \) (composición de aplicaciones lineales). Es claro que \(\text{comp} \) es bilineal, por lo tanto continua.

(e) Sea \(p : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) la aplicación dada por \(p(x, y) = x \cdot y \), producto de números reales. Es claro que \(p \) es bilineal, por lo tanto continua.

(f) Sea \(\mathcal{M}(m \times n, \mathbb{R}) \) el espacio vectorial de las matrices de orden \(m \times n \) con entradas reales. Sea \(P : \mathcal{M}(m \times n, \mathbb{R}) \times \mathcal{M}(n \times p, \mathbb{R}) \to \mathcal{M}(m \times p, \mathbb{R}) \) la aplicación dada por \(P(A, B) = A \cdot B \), producto de matrices. Se tiene que \(P \) es bilineal, por lo tanto continua.

5. **Isometrías.** Decimos que una aplicación \(f : X \subset V \to W \) es una isometría si \(\tilde{N}(f(x) - f(y)) = N(x - y) \), es decir, \(f \) preserva distancias. Es claro, desde la definición que toda isometría es una aplicación continua. Para verlo basta tomar \(\delta = \varepsilon \) en la definición de continuidad.

Por ejemplo, si \(n \leq m \) entonces la aplicación \(i : \mathbb{R}^n \to \mathbb{R}^m \) definida por \(i(x_1, \ldots, x_n) = (x_1, \ldots, x_n, 0, \ldots, 0) \) es una isometría.

Nota. Toda isometría es una aplicación inyectiva, pues si \(f(x) = f(y) \) entonces \(0 = \tilde{N}(f(x) - f(y)) = N(x - y) \), luego \(x = y \).

Sea \(f : X \subset V \to W \) una isometría, y sea \(Y = f(X) \). Entonces \(f^{-1} : Y \to X \) también es una isometría.

Por ejemplo, si \(a \in V \) es un vector fijo y \(T_a : V \to V \) es dada por \(T_a(v) = a + v \), traslación por \(a \). Entonces \(T_a \) es una isometría y \(T_a^{-1} = T_{-a} \).
En \(\mathbb{R}^m \) tenemos que \(T : \mathbb{R}^m \to \mathbb{R}^m \) es una aplicación lineal entonces \(T \) es una isometría si, y sólo si, \(\langle T(x), T(y) \rangle = \langle x, y \rangle \) para todo \(x, y \in \mathbb{R}^m \).

6. **Contracciones Débiles.** Decimos que una aplicación \(f : X \subset V \to W \) es una contracción débil si \(f \) es Lipschitz con constante de Lipschitz igual a 1, es decir, para cada \(x, y \in X \) se tiene que \(\tilde{N}(f(x) - f(y)) \leq N(x - y) \). Es inmediato que toda contracción débil es una aplicación continua.

Ejemplo, sea \(s : V \times V \to V \) la aplicación dada por \(s(x, y) = x + y \) (suma de vectores en \(V \)). Para ver que \(s \) es una contracción débil, tomamos en \(V \times V \) la norma \(N_S((x, y)) = N(x) + N(y) \) (norma de la suma). Sean \((x, y), (u, v) \in V \times V \), se tiene \(N(s(x, y) - s(u, v)) = N((x - u) + (y - v)) \leq N(x - u) + N(y - v) = N_S((x, y) - (u, v)) \).

Ejemplo, **proyecciones.** Sean \(V_1 \) y \(V_2 \) espacios vectoriales normados, con normas \(N_1 \) y \(N_2 \), respectivamente. Se definen las aplicaciones \(\pi_i : V_1 \times V_2 \to V_i \) \((i = 1, 2) \) por \(\pi_1(x, y) = x \) y \(\pi_2(x, y) = y \), estas son llamadas proyecciones en la primera y segunda coordenada, respectivamente. En \(V_1 \times V_2 \) consideramos la norma de la suma \(N_S(x, y) = N_1(x) + N_2(y) \). Tenemos

\[
N_1(\pi_1(u_1, v_1) - \pi_1(u_2, v_2)) = N_1(u_1 - u_2) \\
\leq N_1(u_1 - u_2) + N_2(v_1 - v_2) \\
= N_S((u_1 - u_2, v_1 - v_2)) \\
= N_S((u_1, v_1) - (u_2, v_2)).
\]

Luego, \(\pi_1 \) es una contracción débil. De modo análogo se prueba que \(\pi_2 \) es una contracción débil.
Este ejemplo se generaliza a un producto cartesiano de un número finito de espacios vectoriales normados. Así, considerando \mathbb{R}^m como el producto cartesiano de n copias de \mathbb{R} se tiene que las proyecciones $\pi_i : \mathbb{R}^n \to \mathbb{R}$, definidas por $\pi_i(x_1, \ldots, x_i, \ldots, x_n) = x_i$ (proyección en la i-ésima coordenada) es una contracción débil, por lo tanto continua, para cada $i = 1, \ldots, n$.

Teorema 3.1 Sean $f : X \subset V \to W$ y $g : Y \subset W \to Z$ aplicaciones, con f es continua en $a \in X$ y g es continua en $f(a)$, y $f(X) \subset Y$, entonces la aplicación $g \circ f$ es continua en a.

Demostración. Sea $\varepsilon > 0$ dado. Como g es continua en $f(a)$ se tiene que existe $\eta > 0$ tal que si $y \in Y$ satisface $N_2(y - f(a)) < \eta$ entonces $N_3(g(y) - g(f(a))) < \varepsilon$. Considerando el número $\eta > 0$ se tiene que existe $\delta > 0$ tal que si $x \in X$ y $N_1(x - a) < \delta$ entonces $N_2(f(x) - f(a)) < \eta$, y por lo tanto $N_3(g(f(x)) - g(f(a))) < \varepsilon$, lo que muestra que $g \circ f$ es continua en a.

Teorema 3.2 Sean $f, g : X \subset V \to W$ y $\alpha : X \to \mathbb{R}$ aplicaciones continuas en $a \in X$. Entonces las aplicaciones $f \pm g$, αf, y $I(f, g)$, dadas por $(f \pm g)(x) = f(x) \pm g(x)$, $(\alpha f)(x) = \alpha(x)f(x)$, y $I(f, g)(x) = I(f(x), g(x))$ (I u producto interno en W) son continuas en a: Además, la aplicación $\frac{1}{\alpha} : X - \alpha^{-1}(0) \to \mathbb{R}$, donde $\alpha^{-1}(0) = \{x \in X : \alpha(x) = 0\}$, dada por $\frac{1}{\alpha}(x) = \frac{1}{\alpha(x)}$ es continua en a, si $\alpha(a) \neq 0$.

Demostración. Sean $s : W \times W \to W$, $\varphi : \mathbb{R} \times W \to W$, y $\xi : \mathbb{R} - \{0\} \to \mathbb{R}$ dadas por $s(w_1, w_2) = w_1 + w_2$, $\varphi(\lambda, w) = \lambda w$, y $\xi(t) = 1/t$. Estas aplicaciones son continuas, pues s es una contracción débil, φ
es bilineal, y para \(\xi \) es un caso conocido del cálculo de una variable.

Tenemos

\[
(f + g)(x) = (s \circ (f, g))(x)
\]

\[
(\alpha f)(x) = (\varphi \circ (\alpha, f))(x)
\]

\[
I(f, g)(x) = I \circ (f, g)(x)
\]

\[
\left(\frac{1}{\alpha} \right)(x) = \xi \circ \alpha(x)
\]

La prueba estará completa si probamos que las aplicaciones \((f, g) : X \to W \times W \) y \((\alpha, f) : X \to \mathbb{R} \times W \), dadas por \((f, g)(x) = (f(x), g(x)) \) y
\((\alpha, f)(x) = (\alpha(x), f(x)) \) son continuas. Esto es fácil, y se deja a cargo del lector.

Sean \(V, V_1, \ldots, V_n \) espacios vectoriales normados. Denotemos por \(\pi_i \) la aplicación \(\pi_i : V_1 \times \cdots \times V_n \to V_i \) dada por \(\pi_i(v_1, \ldots, v_i, \ldots, v_n) = v_i \) (proyección en la \(i \)-ésima coordenada). Dada \(f : X \subset V \to V_1 \times \cdots \times V_n \) entonces \(f \) puede ser escrita como
\(f = (f_1, \ldots, f_n) \), donde \(f_i = \pi_i \circ f \) \(i = 1, \ldots, n \). Las aplicaciones \(f_i : X \to V_i \) son llamadas las aplicaciones coordenadas de \(f \). Tenemos el siguiente teorema.

Teorema 3.3 Sea \(f : X \subset V \to V_1 \times \cdots \times V_n \). Entonces \(f \) es continua en \(a \in X \) si, y sólo si, cada aplicación coordenada \(f_i : X \to V_i \) es continua en \(a \).

Demostración. Si \(f \) es continua en \(a \in X \) se tiene que \(\pi_i \circ f = f_i \) \(i = 1, \ldots, n \) es continua en \(a \), por ser composición de funciones continuas.

Recíprocamente, dado \(\varepsilon > 0 \) existen \(\delta_1 > 0, \ldots, \delta_n > 0 \) tales que si \(x \in X \) satisface \(N(x - a) < \delta_i \) entonces \(N_i(f(x) - f(a)) < \varepsilon \),
Aplicaciones Continuas

Aquí \(N \) es una norma en \(V \) y \(N_i (i = 1, \ldots, n) \) es una norma en \(V_i \).

Tomando \(\delta = \min \{ \delta_1, \ldots, \delta_n \} \) se tiene que si \(x \in X \) y \(N(x - a) < \delta \)
entonces \(N_i(f_i(x) - f_i(a)) < \varepsilon \). Ahora, en \(V_1 \times \cdots \times V_n \) tomamos
la norma del máximo \(N_M((v_1, \ldots, v_n)) = \max \{ N_1(v_1), \ldots, N_n(v_n) \} \),
tenemos que si \(x \in X \) y \(N(x - a) < \delta \) entonces \(N_M(f(x) - f(a)) = \max \{ N_1(f_1(x) - f_1(a)), \ldots, N_n(f_n(x) - f_n(a)) \} < \varepsilon \), por lo tanto \(f \)
es continua en \(a \).

Corolario 3.4 Sean \(f : X \subset V_1 \to W_1 \) y \(g : Y \subset V_2 \to W_2 \). Entonces
la aplicación \(f \times g : X \times Y \to W_1 \times W_2 \) dada por \((f \times g)(u, v) = (f(u), g(v)) \) es continua en \((a, b) \in X \times Y \) si, y sólo si, \(f \) es continua
en \(a \) y \(g \) es continua en \(b \).

Demostración. Inmediata.

Ahora caracterizaremos la continuidad de funciones en término de
sucesiones.

Teorema 3.5 Sea \(f : X \subset V \to W \). Entonces \(f \) es continua en \(a \in X \) si, y sólo si, para cada sucesión \((x_k)_{k \in \mathbb{N}} \) en \(X \), con \(\lim_{k \to \infty} x_k = a \),
se tiene que \(\lim_{k \to \infty} f(x_k) = f(a) \).

Demostración. Si \(f \) es continua en \(a \in X \) entonces dado \(\varepsilon > 0 \), existe
\(\delta > 0 \) tal que \(x \in X \) y \(N_1(x - a) < \delta \) implica \(N_2(f(x) - f(a)) < \varepsilon \).

Ahora, sea \((x_k)_{k \in \mathbb{N}} \) una sucesión en \(X \), con \(\lim_{k \to \infty} x_k = a \). Considerando
el número \(\delta > 0 \) anterior, se tiene que existe \(k_0 \in \mathbb{N} \) tal que si \(k > k_0 \)
etonces \(N_1(x_k - a) < \delta \), y por lo tanto \(N_2(f(x_k) - f(a)) < \varepsilon \), lo que
muestra que \(\lim_{k \to \infty} f(x_k) = f(a) \).

Recíprocamente, si la condición vale. Supongamos que \(f \) no es con-
tinua en \(a \in X \), se tiene entonces que existe \(\varepsilon > 0 \) tal que para todo
δ > 0 existe $x_δ \in X$ tal que $N_1(x_δ - a) < δ$ y $N_2(f(x_δ) - f(a)) \geq ε$.
Tomando la sucesión $δ_n = 1/n$ para $n \in \mathbb{N}$, se tiene que para cada $n \in \mathbb{N}$ existe $x_n \in X$ tal que $N_1(x_n - a) < 1/n$ y $N_2(f(x_n) - f(a)) \geq ε$.
Por lo tanto, tenemos una sucesión $(x_n)_{n \in \mathbb{N}}$ en X, con $\lim_{n \to \infty} x_n = a$, pero $N_2(f(x_n) - f(a)) \geq ε$, esto es una contradicción, y la prueba está completa.

Ejemplo. Sea $f : \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x, y) = \begin{cases}
\frac{x^2 y}{x^4 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0),
\end{cases}$$

tenemos que si $x \neq 0$ entonces $f(x, 0) = 0$, luego para cualquier sucesión $(x_n)_{n \in \mathbb{N}}$ con $\lim_{n \to \infty} x_n = 0$ se tiene que $\lim_{n \to \infty} f(x_n, 0) = 0$,
por otra parte, tenemos que $f(x_n, x_n^2) = \frac{x_n^4}{4x_n^2} = \frac{1}{4}$, por lo tanto f no puede ser continua en el origen. Fuera del origen la continuidad de f es fácil de ver y se deja a cargo del lector.

Dada $f : V_1 \times \cdots \times V_n \to W$, la aplicación parcial $f^i : V_i \to W$ se define como sigue: sean $v_i \in V_i$ ($i = 1, \ldots, n$),

$$f^i(x) = f(v_1, \ldots, v_{i-1}, x, v_{i+1}, \ldots, v_n).$$

Es inmediato que si f es continua en $a = (a_1, \ldots, a_n)$ entonces f^i es continua en $a_i \in V_i$, pues cada f^i es la compuesta $f \circ \text{incl}_i$, donde incl$_i : V_i \to V_1 \times \cdots \times V_n$ es la aplicación inclusión dada por incl$_i(x) = (v_1, \ldots, v_{i-1}, x, v_{i+1}, \ldots, v_n)$, y esta última aplicación es claramente continua.
La recíproca a la afirmación no es verdadera. Por ejemplo, consideremos la aplicación \(f : \mathbb{R}^2 \to \mathbb{R} \) dada por

\[
f(x, y) = \begin{cases}
\frac{xy}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0).
\end{cases}
\]

Dado \((a, b) \in \mathbb{R}^2\), denotamos \(f^1 \) por \(f_b \) y \(f^2 \) por \(f_a \), se tiene que

\[
f_b(x) = f(x, b) = \begin{cases}
\frac{xb}{x^2 + b^2} & \text{si } b \neq 0, x \neq 0 \\
0 & \text{si } b = 0, x = 0
\end{cases}
\]

\[
f_a(y) = f(a, y) = \begin{cases}
\frac{ay}{a^2 + y^2} & \text{si } a \neq 0, y \neq 0 \\
0 & \text{si } a = 0, y = 0
\end{cases}
\]

Fijado \((a, b) \in \mathbb{R}^2\) se tiene que \(f_a, f_b : \mathbb{R} \to \mathbb{R} \) son continuas en \(0\), pero \(f \) no es continua en \((0, 0)\). Para ver esto basta considerar la sucesión \((x_n, y_n) = (1/n, 1/n)\). Tenemos que \(\lim_{n \to \infty} (x_n, y_n) = (0, 0) \), pero \(f(x_n, y_n) = 1/2 \) para todo \(n \in \mathbb{N} \), es decir, \(\lim_{n \to \infty} f(x_n, y_n) = 1/2 \neq 0 = f(0, 0) \).

Ahora daremos una caracterización de la continuidad en términos de conjuntos abiertos (cerrados). Esta es la propiedad que se usa para definir la continuidad cuando se tiene una topología en los espacios en cuestión.

Teorema 3.6 Sea \(f : X \subset V \to W \). Entonces \(f \) es continua en \(a \in X \) si, y sólo si, para cada conjunto abierto \(B \subset W \), con \(f(a) \in B \) se tiene que \(f^{-1}(B) \) es un conjunto abierto en \(X \).

Demostración. Sea \(O \subset W \) un conjunto abierto, con \(f(a) \in O \), entonces existe \(\varepsilon > 0 \) tal que \(B(f(a), \varepsilon) \subset O \). Para este \(\varepsilon \) tenemos que existe \(\delta > 0 \) tal que \(x \in B(a, \delta) \cap X \) implica que \(f(x) \in B(f(a), \varepsilon) \),
pues f es continua en a. Luego, tenemos que $f(B(a,\delta) \cap X) \subset B(f(a),\varepsilon)$, por lo tanto $B(a,\delta) \cap X \subset f^{-1}(B(f(a),\varepsilon)) \subset f^{-1}(O)$, de donde $B(a,\delta) \cap X \subset f^{-1}(O) \cap X$, y en consecuencia $f^{-1}(O)$ es un conjunto abierto en X.

Recíprocamente, como para todo $\varepsilon > 0$ se tiene que $B(f(a),\varepsilon)$ es un conjunto abierto en W, se sigue que $f^{-1}(B(f(a),\varepsilon)) \cap X$ es un conjunto abierto en X, existe $\delta > 0$ tal que $f^{-1}(B(f(a),\varepsilon)) \cap X = B(a,\delta) \cap X$, es decir, si $x \in B(a,\delta) \cap X$ se tiene que $f(x) \in B(f(a),\varepsilon)$, por lo tanto f es continua en a.

Corolario 3.7 Sea $f : X \subset V \rightarrow W$. Entonces f es continua si, y sólo si, para cada conjunto abierto $O \subset W$ se tiene que $f^{-1}(O)$ es un conjunto abierto en X.

Corolario 3.8 Sea $f : X \subset V \rightarrow W$. Entonces f es continua si, y sólo si, para cada conjunto cerrado $F \subset W$ se tiene que $f^{-1}(F)$ es un conjunto cerrado en X.

Ejemplos

1. Sea $f : V \rightarrow \mathbb{R}$ una aplicación continua. Entonces los conjuntos $f^{-1}([a,\infty[) = \{ x \in V : a < f(x) \}$ y $f^{-1}(-\infty,a[) = \{ x \in V : f(x) < a \}$ son conjuntos abiertos.

2. Sea $\det : \mathbb{M}(n \times n,\mathbb{R}) \rightarrow \mathbb{R}$ la aplicación determinante. Se tiene que \det es continua, pues es n–lineal. Luego, $\mathbb{GL}(\mathbb{R}^n) = \{ A \in \mathbb{M}(n \times n,\mathbb{R}) : \det(A) \neq 0 \} = \det^{-1}(\mathbb{R} - \{0\})$ es un conjunto abierto en $\mathbb{M}(n \times n,\mathbb{R})$. Es fácil ver que con el producto de matrices se tiene que $\mathbb{GL}(\mathbb{R}^n)$ es un grupo, es decir, $I \in \mathbb{GL}(\mathbb{R}^n)$, y si $A, B \in \mathbb{GL}(\mathbb{R}^n)$ entonces $AB^{-1} \in \mathbb{GL}(\mathbb{R}^n)$.
Nota. Sea $A \in \mathbb{M}(n \times n, \mathbb{R})$, escribimos $A = (c_1, c_2, \ldots, c_n)$, donde

$$c_i = \begin{pmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{in} \end{pmatrix} \in \mathbb{R}^n, \quad (i = 1, \ldots, n)$$

o bien escribimos

$$A = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} \in \mathbb{R}^n, \quad (i = 1, \ldots, n)$$

donde $f_j = (a_{j1}, \ldots, a_{jn}) \in \mathbb{R}^n$, y en este sentido identificando $\mathbb{M}(n \times n, \mathbb{R})$ con \mathbb{R}^{n^2}, se tiene que det es n–lineal.

Ahora si $T : \mathbb{R}^n \to \mathbb{R}^n$ es una aplicación lineal, se define el determinante de T como siendo $\det(T) = \det(A)$, donde A es la matriz de T respecto a bases $\{v_1, \ldots, v_n\}$ y $\{w_1, \ldots, w_n\}$ de \mathbb{R}^n.

(No es difícil probar que $\det(T)$ es independiente de la representación matricial de T, esto es, si T tiene representaciones matriciales A_1 y A_2 en bases de \mathbb{R}^n (no necesariamente las mismas bases) entonces $\det(A_1) = \det(A_2)$.

De lo anterior, tenemos que el conjunto de los isomorfismos de \mathbb{R}^n, $\text{Isom}(\mathbb{R}^n) = \{T : \mathbb{R}^n \to \mathbb{R}^n; \ \det(T) \neq 0\}$, es un conjunto abierto en $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$. Es claro que Isom es un grupo con la composición de funciones, el cual es llamado grupo de isomorfismo de \mathbb{R}^n.

Ahora, sea $\mathcal{S}\mathcal{L}(\mathbb{R}^n) = \{A \in \mathbb{M}(n \times n, \mathbb{R}) : \ \det(A) = 1\}$. Es claro que con el producto de matrices se tiene que $\mathcal{S}\mathcal{L}(\mathbb{R}^n)$ es un grupo,
llamado *grupo especial lineal*. Además, $\mathcal{SL}(\mathbb{R}^n)$ es un conjunto cerrado, pues $\mathcal{SL}(\mathbb{R}^n) = \det^{-1}(1)$.

3. Sea $f : \mathbb{M}(n \times n, \mathbb{R}) \to \mathbb{M}(n \times n, \mathbb{R})$ dada por $f(A) = A^T$ (transpuesta de la matriz A). Se tiene que f es continua, por ser lineal.

4. Sean $S = \{A \in \mathbb{M}(n \times n, \mathbb{R}) : A = A^T\}$ y $A = \{A \in \mathbb{M}(n \times n, \mathbb{R}) : A^T = -A\}$, los conjuntos de las matrices simétricas y antisimétricas, respectivamente. Es fácil ver que estos conjuntos son subespacios de $\mathbb{M}(n \times n, \mathbb{R})$. Sean $S, A : \mathbb{M}(n \times n, \mathbb{R}) \to \mathbb{M}(n \times n, \mathbb{R})$ las aplicaciones dadas por $S(B) = B - B^T$ y $A(B) = B + B^T$, estas aplicaciones son lineales, por lo tanto continuas. Luego, $S = S^{-1}(\{0\}) = \ker(S)$ y $A = A^{-1}(\{0\}) = \ker(A)$, son conjuntos cerrados de $\mathbb{M}(n \times n, \mathbb{R})$. Notemos que dada $B \in \mathbb{M}(n \times n, \mathbb{R})$ se tiene que $B + B^T \in S$ y $B - B^T \in A$, y que

$$B = \frac{1}{2}(B + B^T) + \frac{1}{2}(B - B^T),$$

de donde $\mathbb{M}(n \times n, \mathbb{R}) = S + A$. Ahora, como $S \cap A = \{0\}$, se sigue que la suma anterior, es de hecho una suma directa, es decir, $\mathbb{M}(n \times n, \mathbb{R}) = S \oplus A$.

5. Sea $f : \mathbb{M}(n \times n, \mathbb{R}) \to S$ la aplicación definida por $f(A) = A \cdot A^T$. Es fácil probar que f es continua, luego el conjunto

$$O(n) = \{A \in \mathbb{M}(n \times n, \mathbb{R}) : A \cdot A^T = I\} = f^{-1}(\{I\})$$

es un conjunto cerrado de $\mathbb{M}(n \times n, \mathbb{R})$. De hecho se tiene que $O(n) \subset \mathcal{GL}(\mathbb{R}^n)$. Como $\det(A) = \det(A^T)$ se sigue que si $A \in O(n)$ entonces $\det(A) = \pm 1$, y podemos escribir $O(n) = O^+(n) \cup$.
Aplicaciones Continuas

$O^{-}(n)$, donde $O^{\pm} = O(n) \cap \det^{-1}(\{\pm 1\})$, ambos conjuntos $O^{+}(n)$ y $O^{-}(n)$ son conjuntos cerrados en $O(n)$, y $O^{+}(n) \cap O^{-}(n) = \emptyset$, por lo tanto $O(n)$ es disconexo.

Ahora escribiendo $A \in O(n)$ en la forma

$$A = (v_1, \ldots, v_n),$$

donde $v_i = \begin{pmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{in} \end{pmatrix}$

se tiene que $AA^T = (\langle v_i, v_j \rangle)_{i,j=1,\ldots,n}$, luego como $AA^T = I$ se sigue que $\langle v_i, v_j \rangle = 0$ si $i \neq j$ y $\langle v_i, v_i \rangle = 1$, es decir, las columnas (filas) de A forman una base ortonormal de \mathbb{R}^n.

Tomando en $\mathbb{M}(n \times n, \mathbb{R})$ la norma N dada por

$$N((a_{ij})_{n \times n}) = \sqrt{\sum_{i,j=1}^{n} a_{ij}^2},$$

se tiene que si $A \in O(n)$ entonces $N(A) = \sqrt{n}$, por lo tanto $O(n)$ es acotado. En resumen, $O(n)$ es cerrado y acotado en \mathbb{R}^n, por lo tanto es compacto. Es claro que $O(n)$ con el producto de matrices es un subgrupo de $\text{GL}(\mathbb{R}^n)$.

6. Sea $f : X \subset V \to W$ una aplicación continua. Entonces $\text{graf}(f) = \{(x, f(x)) \in V \times W : x \in X\}$ es un conjunto cerrado en $X \times W$, pues $\text{graf}(f) = \varphi^{-1}(0)$, donde $\varphi : X \times W \to W$ es la aplicación definida por $\varphi(x, y) = y - f(x)$. Es claro que φ es continua.

7. Sea $a \in V$ un vector fijo, y sea $f : V \to \mathbb{R}$ definida por $f(x) = N(x - a)$. Entonces para cada $r \in \mathbb{R}$ se tiene que el conjunto $f^{-1}(r)$ es un conjunto cerrado en V. Note que si $r < 0$ entonces
f^{-1}(r) = \emptyset, si r = 0 entonces f^{-1}(r) = \{a\}, y si r > 0 entonces f^{-1}(r) = S[a,r] (esfera de centro en a y radio r en V). Finalmente observemos que f^{-1}([-\infty, r[) = B(a,r) para todo r > 0.

8. Sean F \subset V y G \subset W conjuntos cerrados. Entonces F \times G \subset V \times W es un conjunto cerrado., pues F \times G = \pi_1^{-1}(F) \cap \pi_2^{-1}(G), donde \pi_1 : V \times W \to V y \pi_2 : V \times W \to W son las proyecciones \pi_1(v,w) = v y \pi_2(v,w) = w. Del mismo modo se demuestra que si A \subset V y B \subset W son conjuntos abiertos entonces A \times B es un conjunto abierto en V \times W.

3.1 Continuidad Uniforme

Definición 3.2 Sea f : X \subset V \to W. Decimos que f es uniformemente continua en X si, para cada \varepsilon > 0 dado, existe \delta = \delta(\varepsilon) (sólo depende de \varepsilon) tal que si x, y \in X con N_1(x-y) < \delta entonces N_2(f(x) - f(y)) < \varepsilon.

Nota. Si f es uniformemente continua entonces f continua. La recíproca es falsa, por ejemplo consideremos f : [0, \infty[\to \mathbb{R} dada por f(x) = \sqrt{x}, esta aplicación es continua, pero no uniformemente continua.

Ejemplo. Si f : X \subset V \to W es una aplicación Lipschitz entonces f es uniformemente continua.

En efecto, tenemos que N_2(f(x) - f(y)) \leq KN_1(x-y) para todo x, y \in X, donde K es la constante de Lipschitz de f. Dado \varepsilon > 0 tomamos \delta = \varepsilon/(K + 1) y tenemos que x, y \in X, con N_1(x-y) < \delta implica N_2(f(x) - f(y)) < \varepsilon.
Consecuencias

i) Toda aplicación lineal, \(L : \mathbb{R}^m \rightarrow \mathbb{R}^n \) es uniformemente continua.

ii) Toda aplicación bilineal \(B : \mathbb{R}^m \times \mathbb{R}^n \rightarrow \mathbb{R}^p \) es uniformemente continua en cualquier subconjunto acotado \(X \subset \mathbb{R}^m \times \mathbb{R}^n \).

Proposición 3.1 Sea \(f : X \subset V \rightarrow W \). Entonces \(f \) es uniformemente continua en \(X \) si, y sólo si, para cada par de sucesiones \((x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} \) en \(X \), con \(\lim_{n \to \infty} (x_n - y_n) = 0 \) se tiene que \(\lim_{n \to \infty} (f(x_n) - f(y_n)) = 0 \).

Demostración. \((\Rightarrow)\) Dado \(\varepsilon > 0 \) existe \(\delta = \delta(\varepsilon) > 0 \) tal que \(x, y \in X \), con \(N_1(x - y) < \delta \) implica \(N_2(f(x) - f(y)) < \varepsilon \). Sean \((x_n)_{n \in \mathbb{N}} \) e \((y_n)_{n \in \mathbb{N}} \) sucesiones en \(X \), tales que \(\lim_{n \to \infty} (x_n - y_n) = 0 \), entonces correspondiente a \(\delta \) existe \(n_0 \in \mathbb{N} \) tal que si \(n \geq n_0 \) entonces \(N_1(x_n - y_n) < \delta \), luego \(N_2(f(x_n) - f(y_n)) < \varepsilon \), por lo tanto \(\lim_{n \to \infty} (f(x_n) - f(y_n)) = 0 \), como queríamos probar.

Recíprocamente, supongamos que \(f \) no es uniformemente continua. Luego, existe \(\varepsilon > 0 \) tal que para cada \(\delta > 0 \) existen puntos \(x_\delta, y_\delta \in X \), con \(N_1(x_\delta - y_\delta) < \delta \) y \(N_2(f(x_\delta) - f(y_\delta)) \geq \varepsilon \). Tomando \(\delta_k = \frac{1}{k} \), para \(k \in \mathbb{N} \), obtenemos elementos \(x_k, y_k \in X \), con \(\lim_{k \to \infty} (x_k - y_k) = 0 \) y \(\lim_{k \to \infty} (f(x_k) - f(y_k)) \neq 0 \), pues para cada \(k \in \mathbb{N} \) se tiene que \(N_2(f(x_k) - f(y_k)) \geq \varepsilon \). Esto es una contradicción y la prueba está completa.

Proposición 3.2 Sean \(f : X \subset V \rightarrow W \) y \(g : Y \subset W \rightarrow Z \) aplicaciones, con \(f \) uniformemente continua en \(X \) y \(g \) uniformemente continua en \(Y \), y \(f(X) \subset Y \). Entonces \(g \circ f \) es uniformemente continua en \(X \).
Demostración. Análoga a la prueba de la continuidad de la composición de aplicaciones continuas.

Proposición 3.3 Sea \(f : X \subset V \to W \) una aplicación uniformemente continua en \(X \). Si \((x_k)_{k \in \mathbb{N}} \) es una sucesión de Cauchy en \(X \) entonces \((f(x_k))_{k \in \mathbb{N}} \) es una sucesión de Cauchy en \(W \).

Demostración. Dado \(\varepsilon > 0 \) existe \(\delta = \delta(\varepsilon) > 0 \), tal que si \(x, y \in X \), con \(N_1(x - y) < \delta \) entonces \(N_2(f(x) - f(y)) < \varepsilon \). Sea \((x_k)_{k \in \mathbb{N}} \) una sucesión de Cauchy en \(X \), correspondiente a \(\delta \), existe \(n_0 \in \mathbb{N} \) tal que si \(n, \ell \geq n_0 \) entonces \(N_1(x_n - x_\ell) < \delta \), luego \(N_2(f(x_n) - f(x_\ell)) < \varepsilon \). Por lo tanto \((f(x_k))_{k \in \mathbb{N}} \) es una sucesión de Cauchy en \(W \).

Proposición 3.4 Sea \(f : X \subset V \to V_1 \times \cdots \times V_n \). Entonces \(f \) es uniformemente continua en \(X \) si, y sólo si, cada aplicación coordenada \(f_i : X \to V_i \ (i = 1, \ldots , n) \) de \(f \) es uniformemente continua en \(X \).

Demostración. Fácil y se deja a cargo del lector.

3.2 Homeomorfismos

Definición 3.3 Sean \(X \subset V \) e \(Y \subset W \). Un homeomorfismo de \(X \) en \(Y \) es una aplicación biyectiva \(f : X \to Y \) tal que \(f \) y \(f^{-1} \) son continuas. Decimos en este caso que \(X \) es homeomorfo a \(Y \).

Ejemplos.

1. Sa \(f : \mathbb{R} \to]-1,1[\) la aplicación dada por \(f(x) = \frac{x}{1+|x|} \). Se tiene que \(f \) es continua y biyectiva, y \(f^{-1}(y) = \frac{y}{1-|y|} \) también es continua. Por lo tanto \(f \) es un homeomorfismo.
2. Sea \(f : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \rightarrow \mathbb{R} \) dada por \(f(x) = \tan(x) \). Se tiene que \(f \) es biyectiva y continua, y \(f^{-1}(y) = \arctan(x) \) también es continua. Por lo tanto \(f \) es un homeomorfismo.

3. Todo par de intervalos acotados abiertos (cerrados) de \(\mathbb{R} \) son homeomorfo.

En efecto, haremos la prueba para intervalos cerrados, la prueba para intervalos abiertos es análoga.

Sean \([a, b]\) y \([c, d]\) intervalos cerrados. La recta que pasa por \((a, c)\) y \((b, d)\) tiene por ecuación \(y = \frac{d-c}{b-a}(x-a) + c \). Definimos \(f(x) = \frac{d-c}{b-a}(x-a) + c \). Es claro que \(f \) es continua y biyectiva.

Un pequeño cálculo muestra que \(f^{-1} \) también es continua.

4. La aplicación \(f : \left[-1, 1 \right] \rightarrow \mathbb{R} \) definida por \(f(x) = \frac{x}{1-x^2} \) es un homeomorfismo.

En efecto, tenemos que \(f'(x) = \frac{1+x^2}{(1-x^2)^2} \), la cual es siempre estrictamente positiva, luego \(f(x) \) es estrictamente creciente, por lo tanto \(f \) es inyectiva. Por otra parte, \(\lim_{x \to \pm 1} f(x) = \pm \infty \), de donde concluimos que \(f \) es sobreyectiva, pues lo anterior significa que dado \(y \in \mathbb{R} \) se tiene que \(f(x) < y \) cuando \(x \) es próximo a \(-1\) y \(f(x) > y \) cuando \(x \) es próximo a 1, luego por el teorema del valor intermedio, se tiene que existe \(x \in \mathbb{R} \) tal que \(f(x) = y \). Por lo tanto \(f \) tiene inversa, y es fácil probar que la inversa es continua (de hecho diferenciable, como se deduce inmediatamente usando el teorema de la función inversa para funciones de variable real a valores reales).

También podemos argumentar en forma directa encontrando la función inversa de \(f \). Para \(y \neq 0 \) sea \(g(y) = \frac{-1+\sqrt{1+4y^2}}{2y} \), tenemos
que $g : \mathbb{R} - \{0\} \to \mathbb{R}$ es continua. Usando la regla de L'Hôpital se tiene que $\lim_{y \to 0} g(y) = 0$, y podemos definir $g(0) = 0$, obteniendo así una función $g : \mathbb{R} \to \mathbb{R}$. Ahora, para $y \neq 0$ tenemos

$$1 < 1 + 4y^2 < 1 + 4|y| + 4y^2 = (1 + 2|y|)^2,$$

luego (tomando riz cuadrada) se tiene que $1 < \sqrt{1 + 4y^2} < 1 + 2|y|$. Restando 1 a la última desigualdad y dividiendo el resultado por $2|y|$, obtenemos

$$0 < |g(y)| = \frac{-1 + \sqrt{1 + 4y^2}}{2|y|} < 1,$$

luego el recorrido de g es el intervalo $]-1, 1[$. Desde la definición de g, se tiene que $g(y)$ es la solución de la ecuación $yx^2 + x - y = 0$. Luego, $yg(y)^2 + g(y) - y = 0$, de donde $y = \frac{g(y)}{1 - g(y)^2}$, es decir, $y = f(g(y))$. Por otra parte,

$$1 + 4f(x)^2 = \frac{(1-x^2)^2}{(1-x^2)^2} + \frac{4x^2}{(1-x^2)^2} = 1 - 2x^2 + x^4 + 4x^2 = \left(1 + \frac{x^2}{1-x^2}\right)^2.$$

Si $x \in]-1, 1[$ tenemos que el término entre paréntesis de la última igualdad es positivo, luego $\sqrt{1 + 4f(x)^2} = \frac{1+x^2}{1-x^2}$, y de aquí

$$\frac{-1 + \sqrt{1 + 4f(x)^2}}{2f(x)} = \left(\frac{-1-x^2}{1-x^2} + \frac{1+x^2}{1-x^2}\right) = x,$$

es decir, $g(f(x)) = x$, lo cual termina la prueba.

5. Sea $S^n \subset \mathbb{R}^{n+1}$ la esfera unitaria, es decir,

$$S^n = \{x \in \mathbb{R}^{n+1} : \langle x, x \rangle = 1\} = \left\{x = (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x_i^2 = 1\right\}.$$
Sea $p_N = (0, \ldots, 0, 1) \in S^n$ (p_N es llamado el polo norte de la esfera). Entonces $S^n - \{p_N\}$ es homeomorfo a \mathbb{R}^n.

Sean

$\varphi_N : U_N \to \mathbb{R}^n, \quad \varphi_N(x_1, \ldots, x_{n+1}) = \frac{1}{1 - x_{n+1}} (x_1, \ldots, x_n),$

$\varphi_S : U_S \to \mathbb{R}^n, \quad \varphi_S(x_1, \ldots, x_{n+1}) = \frac{1}{1 + x_{n+1}} (x_1, \ldots, x_n).$

Estas aplicaciones φ_N y φ_S son llamadas, respectivamente, proyecciones estereográficas norte y sur. Sus inversas, φ_N^{-1} y φ_S^{-1} son dadas por

$\varphi_N^{-1}(x_1, \ldots, x_n) = \left(\frac{2x_1}{1 + ||x||^2}, \ldots, \frac{2x_n}{1 + ||x||^2}, \frac{||x||^2 - 1}{1 + ||x||^2} \right)$

$\varphi_S^{-1}(x_1, \ldots, x_n) = \left(\frac{2x_1}{1 + ||x||^2}, \ldots, \frac{2x_n}{1 + ||x||^2}, \frac{1 - ||x||^2}{1 + ||x||^2} \right)$

donde $||x||^2 = \sum_{i=1}^{n} x_i^2 = \langle x, x \rangle$, $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$.
Es claro que φ_N y φ_S son homeomorfismos. Veamos cómo obtener geométricamente las aplicaciones φ_N y φ_S, así como también sus inversas. Para ello, consideremos $\mathbb{R}^n \subset \mathbb{R}^{n+1}$, donde $\mathbb{R}^n = \{(x_1, \ldots, x_n, 0) \in \mathbb{R}^{n+1}\}$.

En efecto, sea $q \in S^n - \{p_N\}$, definimos $\varphi_N(q)$ como el punto de intersección de la recta que pasa por p_N y q. Esa recta viene dada por $L_{p_Nq} = \{(tq + (1 - t)p_N : t \in \mathbb{R}\} = \{(tq_1, \ldots, tq_{n+1}) + (0, \ldots, 0, 1 - t) : t \in \mathbb{R}\} = \{(tq_1, \ldots, tq_n, tq_{n+1} + 1 - t) : t \in \mathbb{R}\}$.

La intersección de esta recta con $\mathbb{R}^n \times \{0\}$ se traduce en que $tq_{n+1} + 1 - t = 0$, de donde $t = \frac{1}{1 - q_{n+1}}$. Reemplazando este valor de t en la ecuación de la recta e identificando $(x_1, \ldots, x_n, 0) \in \mathbb{R}^n \times \{0\}$ con el punto (x_1, \ldots, x_n) obtenemos que

$$
\varphi_N(q_1, \ldots, q_n, q_{n+1}) = \frac{1}{1 - q_{n+1}} (q_1, \ldots, q_n).
$$

del mismo modo, si $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ se identifica con el punto $(x_1, \ldots, x_n, 0) \in \mathbb{R}^n \times \{0\}$ entonces podemos definir $\varphi_N^{-1}(x)$ como siendo la intersección de la recta que pasa por $(x_1, \ldots, x_n, 0)$ y por p_N con la esfera. Realizando los cálculos obtenemos que

$$
\varphi_N^{-1}(x_1, \ldots, x_n) = \left(\frac{2x_1}{1 + ||x||^2}, \ldots, \frac{2x_n}{1 + ||x||^2}, \frac{||x|| - 1}{1 + ||x||^2}\right).
$$

Ahora es fácil verificar que tanto φ_N como φ_N^{-1} son continuas.

De modo análogo a la construcción anterior podemos considerar el polo sur de la esfera, $p_S = (0, \ldots, 0, -1)$, y definir el homeomorfismo $\varphi_S : S^n - \{p_S\} \rightarrow \mathbb{R}^n$. La elección de los polos norte y sur de la esfera en la construcción anterior no tiene nada de especial, de
hecho podemos definir homeomorfismos como los anteriores uti-
lizando cualquier punto $x_0 \in S^n$. Se deja a cargo del lector la
construcción.

6. Sea $f : X \subset V \rightarrow W$ una aplicación continua. Sea $S = \text{graf}(f) = \{(x, f(x)) \in X \times W : x \in X\}$. Entonces X y $\text{graf}(f)$ son
homeomorfos.

En efecto, sea $\varphi : X \rightarrow \text{graf}(f)$ dada por $\varphi(x) = (x, f(x))$. Es
claro que φ es continua. Ahora, sea $\pi : X \times W \rightarrow X$ la proyección
$\pi(x, w) = x$, es claro que π es continua y que $\varphi^{-1} = \pi/\text{graf}(f)$
(restricción de π al gráfico de f).

7. Sea $X = S^n - \{p_N, p_S\}$ e $Y = S^{n-1} \times \mathbb{R}$ (cilindro $(n-1)$-
dimensional). Entonces X e Y son homeomorfos.

la figura muestra la idea básica de cómo construir el homeomor-
fismo. Los cálculos son sencillos y se dejan a cargo del lector.
8. Sea $f : S^n \times \mathbb{R} \to \mathbb{R}^{n+1} - \{0\}$ la aplicación dada por $f(v, t) = e^tv$. Tenemos que f es un homeomorfismo, lo cual se prueba fácilmente. Indicación: la inversa de f es $f^{-1}(x) = \left(\frac{x}{||x||}, \log(||x||) \right)$.

Observación. Si $\varphi : X \subset V \to Y \subset W$ es una aplicación continua y biyectiva, no necesariamente $\varphi^{-1} : Y \to X$ es continua. Por ejemplo consideremos la aplicación $\varphi : \mathbb{R} [1, \infty[\to \mathbb{R}^2$ dada por $\varphi(t) = (t^3 - t, t^2)$. Tenemos que $\varphi : \mathbb{R} [1, \infty[\to \mathbb{R} [\varphi^{-1}, \infty[)$ es una biyección continua, pero $\varphi^{-1} : \mathbb{R} [1, \infty[\to \mathbb{R} [\varphi^{-1}, \infty[)$. Para ver esto último consideramos sucesiones $(u_n)_{n \in \mathbb{N}}$ y $(v_n)_{n \in \mathbb{N}}$ en $\mathbb{R} [1, \infty[)$ como muestra la figura, con $\lim_{n \to \infty} u_n = \lim_{n \to \infty} v_n = (0, 1)$.

Es claro que $\varphi^{-1}(u_n) \to 1$ y $\varphi^{-1}(v_n) \to -1$, luego φ^{-1} no puede ser continua en el punto $(0, 1)$.

Otro ejemplo del mismo tipo anterior es considerar $f : [0, 2\pi[\to S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ dada por $f(t) = (\cos(t), \sen(t))$. Se tiene que f es biyectiva y continua, pero f^{-1} no es continua en el punto...
(1, 0) ∈ S^1

Elegimos sucesiones \((u_n)_{n \in \mathbb{N}}\) y \((v_n)_{n \in \mathbb{N}}\), con \(\lim_{n \to \infty} u_n = \lim_{n \to \infty} v_n = (1, 0)\) como muestra la figura. Se tiene que \(f^{-1}(u_n) \to 0\) y \(f^{-1}(v_n) \to 2\pi\), por lo tanto \(f^{-1}\) no es continua en \((1, 0)\).

Tenemos ahora la siguiente proposición.

Proposición 3.5
1. Si \(f : X \subset V \to Y \subset W\) y \(g : Y \subset W \to Z \subset U\) son homeomorfismos entonces \(g \circ f : X \to Z\) es un homeomorfismo.

2. Si \(f : X \to Y\) es un homeomorfismo entonces \(f^{-1} : Y \to X\) es un homeomorfismo.

Demostración. Inmediata, se deja a cargo del lector.

3.3 Ejercicios

1. Para cada \(n \geq 1\) se tiene que \(\mathbb{R}^n - \{0\}\) es homeomorfa a \(S^{n-1} \times \mathbb{R}\). Un homeomorfismo es dado por \(f : \mathbb{R}^n - \{0\} \to S^{n-1} \times \mathbb{R}\) definido por \(f(x) = (\frac{1}{||x||}x, \log(||x||))\). Su inverso \(f^{-1} : S^{n-1} \times \mathbb{R} \to \mathbb{R}^n - \{0\}\) es definido por \(f^{-1}(y, t) = e^t y\).
2. La aplicación \(h : \mathbb{D}^p \times \mathbb{D}^q \longrightarrow \mathbb{D}^{p+q} \) definida por
\[
h(x, y) = \begin{cases}
\frac{||y||}{\sqrt{||x||^2 + ||y||^2}} (x, y) & 0 < ||x|| \leq ||y|| \\
\frac{||x||}{\sqrt{||x||^2 + ||y||^2}} (x, y) & 0 < ||y|| \leq ||x|| \\
0 & x = y = 0
\end{cases}
\]
es un homeomorfismo. El lector puede mostrar una forma geométrica de obtener esta fórmula.

3. Pruebe que si \(f : X \longrightarrow Y \) es un homeomorfismo entonces \(U \subset X \) es un conjunto abierto si y sólo si \(f(U) \subset Y \) es un conjunto abierto.

4. Sea \(f : X \longrightarrow Y \) un homeomorfismo. Pruebe que para cada \(A \subset X \) se tiene
 (a) \(A \) es cerrado en \(X \) si y sólo si \(f(A) \) es cerrado en \(Y \).
 (b) \(f(\text{clausura}(A)) = \text{clausura}(f(A)) \).
 (c) \(f(\text{int}(A)) = \text{int}(f(A)) \).
 (d) \(f|A : A \longrightarrow f(A) \) es un homeomorfismo.

5. Pruebe que la inversión \(\text{inversion} : \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}^n \setminus \{0\} \) en relación a la esfera de centro en 0 y radio \(R \), la cual es definida por \(\text{inversion}(x) = \frac{Rx}{||x||^2} \) es un homeomorfismo. Pruebe que \(\text{inversion} \) deja invariante a la esfera \(S_R^{n-1} = \{ x \in \mathbb{R}^n : \langle x, x \rangle = R^2 \} \).

6. Pruebe que una biyección \(f : \mathbb{R} \longrightarrow \mathbb{R} \) es homeomorfismo si y sólo si es una función monótona.
7. Ilustre con un ejemplo lo siguiente: existen espacios homeomorfos X e Y y una biyección continua $f : X \to Y$ que no es homeomorfismo.

8. Pruebe que el subconjunto de la esfera $S^n \subset \mathbb{R}^{n+1}$ definido por las inecuaciones $x_1^2 + x_2^2 + \cdots + x_k^2 < x_{k+1}^2 + \cdots + x_n^2$ es homeomorfo a $\mathbb{R}^n - \mathbb{R}^{n-k}$.

9. **Espacio de Matrices con coeficientes reales.** $M = \mathbb{M}(n \times m, \mathbb{R})$, con la topología inducida por la biyección $\varphi : \mathbb{M}(n \times m, \mathbb{R}) \to \mathbb{R}^{nm}$, donde $\varphi([(a_{ij}]) = (a_{11}, \ldots, a_{im}, \ldots, a_{n1}, \ldots, a_{nm})$.
 Pruebe que φ es un homeomorfismo.

10. Sea \mathbb{C} el cuerpo de los números complejos, $z = x + iy$, $x, y \in \mathbb{R}$.
 Podemos identificar \mathbb{C} con \mathbb{R}^2, mediante la biyección $z = x + iy \longmapsto (x, y)$. Sea $\mathbb{C}^n = \mathbb{C} \times \cdots \times \mathbb{C}$, el producto cartesiano de n copias de \mathbb{C}. Entonces, $\varphi : \mathbb{C}^n \to \mathbb{R}^{2n}$ dado por $\varphi(x_1 + iy_1, \ldots, x_n + iy_n) = (x_1, y_1, \ldots, x_n, y_n)$ en un homeomorfismo.

11. **Espacio de Matrices con coeficientes complejos.** Denotemos por $\mathbb{M}(n \times m, \mathbb{C})$ el conjunto de las matrices de orden $n \times m$ con coeficientes en \mathbb{C}. Definamos $\varphi : \mathbb{M}(n \times m, \mathbb{C}) \to \mathbb{R}^{2nm}$, $\varphi([(z_{kl}]) = \varphi([(x_{kl} + iy_{kl}]) = (x_{11}, y_{11}, \ldots, x_{nm}, y_{nm})$. Pruebe que φ es un homeomorfismo.

12. Pruebe que un intervalo en \mathbb{R} no puede ser homeomorfo a un disco en \mathbb{R}^2. Indicación: usa un argumento de conexidad. ¿Se puede extender argumento para probar que un disco en \mathbb{R}^2 no puede ser homeomorfo a una bola en \mathbb{R}^3?

13. Sean $A, B \subset \mathbb{R}$, con $A \neq \mathbb{R}$ y $B \neq \mathbb{R}$. Si A es cerrado y B
abierto. Pruebe que A y B no pueden ser homeomorfos.

14. Dar un ejemplo de una aplicación continua $f : X \to Y$ y un subconjunto $A \subset Y$ conexo, tal que $f^{-1}(A)$ no es conexo. (existen muchos de tales ejemplos, construya algunos explícitamente).

15. Pruebe que la aplicación $f : \mathbb{R} - \{0\} \to \mathbb{R}$ definida por $f(x) = 1/x$ es continua.

16. Sean $d, g, h : \mathbb{R}^2 \to \mathbb{R}$ funciones continuas. Se define la función $f : \mathbb{R}^2 \to \mathbb{R}$ por

$$F(x, y) = h(h(x, y), g(x, y)).$$

Demuestre que F es continua.

17. Estudie la continuidad de las siguientes funciones:

(a) $f(x, y) = \begin{cases} \frac{x}{x+y} & \text{si } x + y \neq 0 \\ 1 & \text{si } x + y = 0 \end{cases}$

(b) $f(x, y, z) = x^3 \ln(x^3 y + z) + \text{sen}(z^2 + x)$

18. Sea $L : \mathbb{R}^n \to \mathbb{R}^m$ una aplicación lineal

(a) Demuestre que las siguientes proposiciones son equivalentes

i. L es continua para todo punto de \mathbb{R}^n

ii. L es continua en 0.

iii. $||L(x)||$ es acotada si $x \in B[0, 1]$ (bola unitaria cerrada).

(b) Demuestre que toda aplicación lineal de \mathbb{R}^n en \mathbb{R}^m es continua.
Aplicaciones Continuas

item Defina \(\lim_{x \to a} f(x) = L \), en espacios normados. De un ejemplo.

19. Sea \(f : \mathbb{R}^2 \to \mathbb{R} \) la función definida por

\[
f(x, y) = \begin{cases}
\frac{xy}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0), \\
0 & \text{si } (x, y) = (0, 0)
\end{cases}
\]

¿Es \(f \) continua?

20. Sea \(f : \mathbb{R}^n \to \mathbb{R} \), una aplicación continua y tal que \(f(0) = 0 \) y \(\lim_{\|x\| \to \infty} f(x) = \infty \). Demuestre que \([0, \infty) \subset f(\mathbb{R}^n)\).

21. Sea \(f : A \to \mathbb{R}^n \) una función continua. Sea \(\{x_k\}_k \) una sucesión tal que \(\lim_{k \to \infty} x_k = a \) y \(\|f(x_k)\| \leq C \) para todo \(k \in \mathbb{N} \). Probar que \(\|f(a)\| \leq C \).

22. Pruebe que la función

\[
f(x, y) = \begin{cases}
\frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases}
\]

es continua en el origen.

23. Sea

\[
f(x, y) = \begin{cases}
x^3 + y^3 & \text{si } x \neq y \\
x - y & \text{si } x = y
\end{cases}
\]

¿es \(f \) continua en el origen?.

24. Hallar el conjunto de puntos de donde las siguientes funciones no son continuas:

 (a) \(f(x, y) = \ln(\sqrt{x^2 + y^2}) \)
25. Muestre que las siguientes funciones son discontinuas en el origen:

(a)
\[f(x, y) = \begin{cases}
\frac{1}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases} \]

(b)
\[f(x, y) = \begin{cases}
\frac{x^4 - y^4}{x^4 + y^4} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases} \]

(c)
\[f(x, y) = \begin{cases}
\frac{x^2y^2}{x^4 + y^4} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases} \]

(d)
\[f(x, y) = \begin{cases}
\frac{x^2y}{x^3 + y^3} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases} \]

(e)
\[f(x, y) = \begin{cases}
\frac{x^3 + y^3}{x - y} & \text{si } x \neq y \\
0 & \text{si } x = y
\end{cases} \]

(f)
\[f(x, y) = \begin{cases}
\frac{xy^3}{x^2 + y^6} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases} \]

26. Demuestre que las siguientes funciones son continuas en el origen:
27. Estudie la continuidad de las siguientes funciones en el origen:

(a)
\[f(x, y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\ 0 & \text{si } (x, y) = (0, 0) \end{cases} \]

(b)
\[f(x, y) = \begin{cases} \frac{x^3 y^3}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\ 0 & \text{si } (x, y) = (0, 0) \end{cases} \]

28. ¿Podemos definir apropiadamente las siguientes funciones, de modo que resulten continuas en el origen?

(a) \(f(x, y) = |x|^y \)

(b) \(f(x, y) = \sin \left(\frac{x}{y} \right) \)

(c) \(f(x, y) = \frac{x^3 + y^3}{x^2 + y^2} \)

(d) \(f(x, y) = x^2 \log(x^2 + y^2) \)
Capítulo 4

Límite de Aplicaciones

Estudiamos ahora el concepto de límite para aplicaciones en espacios vectoriales normados.

Definición 4.1 Sea \(X \subseteq V \). Sean \(f : X \to W \) y \(a \in X' \) (es decir, \(a \) es un punto de acumulación de \(X \)). Decimos que \(b \in W \) es el límite de \(f \) cuando \(x \) tiende a \(a \) si, para cada \(\varepsilon > 0 \) dado, existe \(\delta = \delta(a, \varepsilon) > 0 \) (depende de \(a \) y \(\varepsilon \)) tal que si \(x \in X \) y \(0 < N_1(x - a) < \delta \) entonces \(N_2(f(x) - b) < \varepsilon \). Usamos la notación \(\lim_{x \to a} f(x) = b \) o \(f(x) \to b \) cuando \(x \to a \).

Observación. No necesariamente se tiene que \(a \in X \), de hecho, \(f \) puede no estar definida en \(a \).

Ejemplo. Sea \(f : \mathbb{R} - \{0\} \to \mathbb{R} \) dada por \(f(x) = x \sin(1/x) \). Tenemos que \(0 \in \mathbb{R} \) es un punto de acumulación de \(\mathbb{R} - \{0\} \) (dominio de \(f \)), y \(\lim_{x \to 0} f(x) = 0 \) pues \(0 \leq |x \sin(1/x)| \leq |x| \).

Ejemplo. \(\lim_{(x,y) \to (0,0)} xy \frac{x^2 - y^2}{x^2 + y^2} = 0 \). Primero notemos que \((0,0) \) no está en el dominio de la función a la cual queremos calcular el límite,
Límite de Aplicaciones

pues \(f(x, y) = xy \frac{x^2 - y^2}{x^2 + y^2} \) está definida en \(\mathbb{R}^2 - \{(0,0)\} \), pero es claro que \((0,0)\) es un punto de acumulación del dominio de \(f \).

Pongamos \(x = r \cos(\theta) \) e \(y = r \sin(\theta) \) (coordenadas polares en \(\mathbb{R}^2 - \{(0,0)\}\)). Tenemos entonces que

\[
\left| xy \frac{x^2 - y^2}{x^2 + y^2} \right| = |r^2 \sin(\theta) \cos(\theta) \cos(2\theta)|
\]

\[
\leq \frac{r^2}{4} = \frac{x^2 + y^2}{4} < \varepsilon,
\]

si \(\frac{x^2}{4} < \frac{\varepsilon}{2} \) e \(\frac{y^2}{4} < \frac{\varepsilon}{2} \) o equivalentemente si, \(|x| < \sqrt{2\varepsilon} = \delta \) y \(|y| < \sqrt{2\varepsilon} = \delta \). Luego para \(\varepsilon > 0 \) dado, existe \(\delta > 0 \) tal que \(|xy \frac{x^2 - y^2}{x^2 + y^2} - 0| < \varepsilon \) cuando \(|x| < \delta \) y \(|y| < \delta \), como queríamos probar.

Teorema 4.1 Sean \(f : X \subset V \rightarrow W \ y a \in X' \). Si \(\lim_{x \to a} f(x) \) existe entonces es único.

Demostración. Supongamos que \(\lim_{x \to a} f(x) \) existe y que se tiene \(\lim_{x \to a} f(x) = a \) y \(\lim_{x \to a} f(x) = c \). Dado \(\varepsilon > 0 \) existe \(\delta > 0 \) tal que \(x \in X \) y \(0 < N_1(x - a) < \delta \) implica que \(N_2(f(x) - b) < \varepsilon/2 \) y \(N_2(f(x) - c) < \varepsilon/2 \).

De aquí tenemos que \(N_2(b - c) \leq N_2(b - f(x)) + N_2(f(x) - c) < \varepsilon \). Como \(\varepsilon > 0 \) es arbitrario, se sigue que \(N_2(b - c) = 0 \), de donde \(b = c \).

Observación. Si \(a \in X \), es un punto de acumulación de \(X \) entonces \(f \) es continua en \(a \) si, y sólo si, \(\lim_{x \to a} f(x) = f(a) \). La prueba de esto es inmediata desde la definición de continuidad de \(f \) en \(a \).

Ahora caracterizamos el límite de aplicaciones en término del límite de sucesiones.

Teorema 4.2 Sea \(f : X \subset V \rightarrow W \ y a \in X' \) un punto de acumulación de \(X \). Entonces \(\lim_{x \to a} f(x) = b \) si, y sólo si, para cada
Demuestra. Si $\lim_{x \to a} f(x) = b$ entonces para cada $\varepsilon > 0$ dado, existe $\delta > 0$ tal que si $x \in X$ y $0 < N_1(x - a) < \delta$ entonces $N_2(f(x) - b) < \varepsilon$.

Ahora, sea $(x_n)_{n \in \mathbb{N}}$ una sucesión en X, con $x_n \neq a$ para todo $n \in \mathbb{N}$ y $\lim_{n \to \infty} x_n = a$. Correspondiente a δ existe $n_0 \in \mathbb{N}$ tal que $n \geq n_0$ implica $N_1(x_n - a) < \delta$, luego $N_2(f(x_n) - b) < \varepsilon$, de donde $\lim_{n \to \infty} f(x_n) = b$.

Recíprocamente, si la condición se cumple y $\lim_{x \to a} f(x) \neq b$. Luego, existe $\varepsilon > 0$ tal que para cada $\delta > 0$ se tiene que $x \in X$, con $0 < N_1(x - a) < \delta$, implica $N_2(f(x) - b) \geq \varepsilon$. Tomando para cada $k \in \mathbb{N}$ el número $\delta_k = 1/k$, obtenemos una sucesión $(x_k)_{k \in \mathbb{N}}$ en X, con $x_k \neq a$ para todo $k \in \mathbb{N}$ y $0 < N_1(x_k - a) < 1/k$, luego se tiene $N_2(f(x_k) - b) \geq \varepsilon$, es decir, hemos construido una sucesión $(x_k)_{k \in \mathbb{N}}$ en X, con $x_k \neq a$ para todo $k \in \mathbb{N}$, tal que $\lim_{k \to \infty} x_k = a$, pero $N_2(f(x_k) - b) \geq \varepsilon$, de donde $\lim_{k \to \infty} f(x_k) \neq b$. Esto es una contradicción, y la prueba del teorema está completa.

Como corolario de la prueba de la segunda parte del teorema anterior, tenemos la siguiente proposición.

Proposición 4.1 Sean $f : X \subset V \to W$ y $a \in X'$. Si para cada sucesión $(x_k)_{k \in \mathbb{N}}$ en X, con $x_k \neq a$ para todo $k \in \mathbb{N}$ y $\lim_{k \to \infty} x_k = a$, se tiene que $\lim_{k \to \infty} f(x_k) = b$, y b no depende de la sucesión elegida.

Entonces $\lim_{x \to a} f(x) = b$.

Demostración. Directa desde la prueba de la segunda parte del teorema anterior.

Teorema 4.3 Sean $f : X \subset V \to V_1 \times \cdots \times V_n$ y $a \in X'$. Entonces
\[\lim_{x \to a} f(x) = b = (b_1, \ldots, b_n) \] si, y sólo si, \[\lim_{x \to a} f_i(x) = b_i \] para cada \(i = 1, \ldots, n \) (aquí \(f_i = \pi_i \circ f \)).

Demostración. En \(V_1 \times \cdots \times V_n \) tomamos la norma del máximo \(N_M(x_1, \ldots, x_n) = \max\{N_1(x_1), \ldots, N_n(x_n)\} \).

\((\Rightarrow)\) Dado \(\varepsilon > 0 \) existe \(\delta > 0 \) tal que \(x \in X \) y \(0 < N(x - a) < \delta \) implica \(N_M(f(x) - b) < \varepsilon \). Ahora, \(f(x) - b = (f_1(x) - b_1, \ldots, f_n(x) - b_n) \), luego si \(N_M(f(x) - b) = \max\{N_1(f_1(x) - b_1), \ldots, N_n(f_n(x) - b_n)\} < \varepsilon \) se sigue que \(N_i(f_i(x) - b_i) < \varepsilon \), es decir, \(\lim_{x \to a} f_i(x) = b_i \) para todo \(i = 1, \ldots, n \).

\((\Leftarrow)\) Ahora, para cada \(\varepsilon > 0 \), existe \(\delta > 0 \) tal que si \(x \in X \) y \(0 < N(x - a) < \delta \) entonces \(N_j(f_j(x) - b_j) < \varepsilon \) (\(j = 1, \ldots, n \)). De aquí se sigue que \(N_M(f(x) - b) < \varepsilon \), es decir, \(\lim_{x \to a} f(x) = b \). Lo que completa la prueba.

Teorema 4.4 Sean \(f : X \subset V \to W, \ g : Y \subset W \to Z \), con \(f(X) \subset Y \), y sean \(a \in X \) y \(b \in Y \). Entonces

\[\text{if } \lim_{x \to a} f(x) = b \text{ y } g \text{ es continua en } b \text{ (en particular, } b \in Y \text{) entonces } \lim_{x \to a} (g \circ f)(x) = g(b) \text{, es decir, } \lim_{x \to a} g(f(x)) = g(\lim_{x \to a} f(x)) \text{.} \]

\[\text{ii) si } \lim_{x \to a} f(x) = b, \lim_{y \to b} g(y) = c, \text{ y } x \neq a \text{, implica que } f(x) \neq b. \]

Demostración. i) Dado \(\varepsilon > 0 \) existe \(\delta > 0 \) tal que si \(y \in Y \), con \(N_2(y - b) < \delta \) entonces \(N_3(g(y) - g(b)) < \varepsilon \). Correspondiente a ese \(\delta \), existe \(\eta > 0 \) tal que si \(x \in X \), con \(0 < N_1(x - a) < \eta \), entonces \(N_2(f(x) - b) < \delta \), luego \(N_3(g(f(x)) - g(b)) < \varepsilon \), esto es, \(\lim_{x \to a} g(f(x)) = g(b) \).

ii) Dado \(\varepsilon > 0 \) existe \(\delta > 0 \) tal que si \(y \in Y \), con \(0 < N_2(y - b) < \delta \), entonces \(N_3(g(y) - c) < \varepsilon \). Correspondiente a ese \(\delta \) existe \(\eta > 0 \) tal
Sean \(x \in X \), con \(0 < N_1(x-a) < \eta \), entonces \(N_2(f(x)-b) < \delta \), y como \(x \neq a \) implica que \(f(x) \neq b \), se tiene que \(0 < N_2(f(x)-b) < \delta \) cuando \(0 < N_1(x-a) < \eta \), y por lo tanto \(N_3(g(f(x))-c) < \varepsilon \), es decir, \(\lim_{x \to a} g(f(x)) = c \). Lo que completa la prueba.

Teorema 4.5 Sean \(f, g : X \subseteq V \to W \), \(\alpha : X \to \mathbb{R} \), y \(a \in X' \). Si

\[
\lim_{x \to a} f(x) = b, \quad \lim_{x \to a} g(x) = c, \quad y \quad \lim_{x \to a} \alpha(x) = \alpha \text{ entonces}
\]

a) \(\lim_{x \to a} (f(x) \pm g(x)) = b \pm c = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) \),

b) \(\lim_{x \to a} \alpha(x)f(x) = \alpha b = \lim_{x \to a} \alpha(x) \lim_{x \to a} f(x) \),

c) \(\lim_{x \to a} I(f(x), g(x)) = I(b, c) = I(\lim_{x \to a} f(x), \lim_{x \to a} g(x)) \), donde \(I \) es un producto interno en \(W \). En particular, si \(N_1(w) = \sqrt{I(w, w)} \) es la norma inducida por \(I \), entonces \(\lim_{x \to a} N_1(f(x)) = N_1(b) = N_1(\lim_{x \to a} f(x)) \).

Demostración. a) Dado \(\varepsilon > 0 \) existe \(\delta > 0 \) tal que \(x \in X \), con \(0 < N_1(x-a) < \delta \), implica \(N_2(f(x)-b) < \varepsilon \) y \(N_2(g(x)-c) < \varepsilon \). Ahora, \(N_2((f(x) \pm g(x))-(b \pm c)) \leq N_2(f(x)-b)+N_2(g(x)-c) < 2\varepsilon \) si \(x \in X \), con \(0 < N_1(x-a) < \delta \). Por lo tanto, \(\lim_{x \to a} (f(x) \pm g(x)) = b \pm c \).

b) Dado \(\varepsilon > 0 \) existe \(\delta > 0 \) tal que si \(x \in X \), con \(0 < N_1(x-a) < \delta \), entonces \(N_2(f(x)-b) < \varepsilon \) y \(|\alpha(x)-\alpha| < \varepsilon \). Ahora, \(N_2(\alpha(x)f(x)-ab) = N_2(\alpha(x)f(x)-\alpha(x)b+\alpha(x)b-ab) \leq |\alpha(x)|N_2(f(x)-b)+N_2(b)|\alpha(x)-\alpha| \). Como \(\lim_{x \to a} \alpha(x) \) existe, se sigue que existe una constante \(M > 0 \) tal que \(|\alpha(x)| \leq M \) para todo \(x \in X \), con \(0 < N_1(x-a) < \delta \). Por lo tanto, si \(x \in X \) y \(0 < N_1(x-a) < \delta \) se sigue que \(N_2(\alpha(x)f(x)-ab) \leq MN_2(f(x)-b)N(b)|\alpha(x)-\alpha| < (M+N(b))\varepsilon \), es decir, \(\lim_{x \to a} \alpha(x)f(x) = ab \).

c) Se sigue de la proposición anterior, pues \(I(f(x), g(x)) = I\circ(f, g))(x) \), e \(I \) es continua, y existe \(\lim_{x \to a} (f(x), g(x)) = (b, c) \).
Esto completa la prueba del teorema.

Observaciones.

1. Si \(\lim_{x \to a} (f(x) \pm g(x)) \) existe, entonces no necesariamente existen \(\lim_{x \to a} f(x) \) o \(\lim_{x \to a} g(x) \). Por ejemplo consideremos \(f, g : \mathbb{R} \to \mathbb{R} \) las aplicaciones dadas por \(f(x) = 1 + \sin(1/x) \) y \(g(x) = -\sin(1/x) \). Se tiene \(\lim_{x \to 0} f(x) \) y \(\lim_{x \to 0} g(x) \) no existen, pero \(f(x) + g(x) = 1 \) para todo \(x \in \mathbb{R} \setminus \{0\} \), por lo tanto existe \(\lim_{x \to 0} (f(x) + g(x)) = 1 \).

2. Si \(\lim_{x \to a} \alpha(x)f(x) \) existe, no necesariamente existen \(\lim_{x \to a} f(x) \) o \(\lim_{x \to a} \alpha(x) \). Por ejemplo, consideremos las aplicaciones \(\alpha : \mathbb{R} \to \mathbb{R} \) dada por \(\alpha(x) = x \) y \(f : \mathbb{R} \setminus \{0\} \to \mathbb{R}^2 \) dada por \(f(x) = (\sin(1/x), e^x/x) \). Se tiene que \(\lim_{x \to 0} f(x) \) no existe, y por otra parte \(\lim_{x \to 0} \alpha(x)f(x) = \lim_{x \to 0} (x \sin(1/x), e^x) = (0, 1) \) existe.

Teorema 4.6 Sean \(f, g : X \subset V \to \mathbb{R} \) y \(a \in X' \). Si \(\lim_{x \to a} f(x) = b \), \(\lim_{x \to a} g(x) = c \), y \(f(x) \leq g(x) \) para todo \(x \in X \setminus \{a\} \), entonces \(b \leq c \).

Demostración. Supongamos por el contrario que \(c < b \). Tomando \(\varepsilon = (b - c)/2 \) se tiene que \(\varepsilon > 0 \), y por lo tanto existe \(\delta > 0 \) tal que si \(x \in X \) y \(0 < N_1(x - a) < \delta \) entonces \(|f(x) - b| < \varepsilon \) y \(|g(x) - c| < \varepsilon \), esto es, \(f(x) \in]b - \varepsilon, b + \varepsilon[\) y \(g(x) \in]c - \varepsilon, c + \varepsilon[\). Como \(c + \varepsilon = (b + c)/2 \) y \(b - \varepsilon = (b + c)/2 \), se sigue que \(f(x) > g(x) \) para todo \(x \in X \), con \(0 < N_1(x - a) < \delta \). Esto es una contradicción y la prueba está completa.

Teorema 4.7 Sea \(f : X \subset V \to \mathbb{R}^m \) una aplicación uniformemente continua. Entonces para cada \(a \in X' \) existe \(\lim_{x \to a} f(x) \).

Demostración. Sea \(a \in X' \) entonces existe una sucesión \((x_k)_{k \in \mathbb{N}} \) en \(X \setminus \{a\} \), con \(\lim_{k \to \infty} x_k = a \), por lo tanto \((x_k)_{k \in \mathbb{N}} \) es una sucesión de
Sergio Plaza

Cauchy (por ser convergente). Luego, \((f(x_k))_{k \in \mathbb{N}}\) es una sucesión de Cauchy en \(\mathbb{R}^m\) (pues siendo \(f\) uniformemente continua, la imagen por \(f\) de sucesiones de Cauchy en \(X\) son sucesiones de Cauchy en \(\mathbb{R}^m\)). Como en \(\mathbb{R}^m\) cada sucesión de Cauchy es convergente, se sigue que existe \(\lim_{k \to \infty} f(x_k)\). Sea \(b = \lim_{k \to \infty} f(x_k)\). Vamos a probar ahora que \(b\) no depende de la sucesión elegida. De ser esto verdadero, tendremos que \(\lim_{x \to a} f(x)\) existe por Proposición anterior.

Sea \((y_k)_{k \in \mathbb{N}}\) otra sucesión en \(X - \{a\}\), con \(\lim_{k \to \infty} y_k = a\). Supongamos que \(\lim_{k \to \infty} f(y_k) = c \neq b\). Definamos la sucesión \((z_k)_{k \in \mathbb{N}}\) en \(X - \{a\}\) por \(z_{2k} = x_k\) y \(z_{2k+1} = y_k\). Se tiene que \(\lim_{k \to \infty} z_k = a\), y la sucesión \((f(z_k))_{k \in \mathbb{N}}\), la cual es de Cauchy en \(\mathbb{R}^m\), posee dos subsucesiones que convergen a dos puntos distintos, a saber \((f(z_{2k}))_{k \in \mathbb{N}} = (f(x_k))_{k \in \mathbb{N}}\) la cual converge a \(b\) y \((f(z_{2k+1}))_{k \in \mathbb{N}} = (f(y_k))_{k \in \mathbb{N}}\) la cual converge a \(c\). Esto es una contradicción.

Nota. Sean \(f : X \subset V \to W\) y \(a \in X'\). Si \(\lim_{x \to a} f(x) = b\) entonces para cada \(u \in V\), con \(u \neq 0\), se tiene que \(\lim_{t \to 0} f(a + tu) = b\). Más general, si \(J \subset \mathbb{R}\) es un intervalo abierto con \(0 \in \overline{J} - J\), y \(\alpha : J \to V\) es una aplicación continua con \(\alpha(t) \neq a\) para todo \(t \in J\) y \(\lim_{t \to 0} \alpha(t) = a\) entonces \(\lim_{t \to 0} f(\alpha(t)) = b\). La demostración de esto es fácil y se deja a cargo del lector.

Una aplicación importante de este hecho es que si, para algún \(u \in V\), con \(u \neq 0\) se tiene que \(\lim_{t \to 0} f(a + tu)\) no existe entonces \(\lim_{x \to a} f(x)\) no existe. Más general, si \(J \subset \mathbb{R}\) es un intervalo, con \(0 \in \overline{J} - J\), y \(\alpha : J \subset \mathbb{R} \to V\) es una aplicación continua, con \(\alpha(t) \neq a\) para todo \(t \in J\) y \(\lim_{t \to 0} \alpha(t) = a\). Si \(\lim_{t \to 0} f(\alpha(t))\) no existe entonces \(\lim_{x \to a} f(x)\) no existe.
Límite de Aplicaciones

También tenemos que si para \(u, v \in V \) los límites \(\lim_{t \to 0} f(a + tu) = \lim_{t \to 0} f(a + tv) \) entonces \(\lim_{x \to a} f(x) \) no existe. Más general, si \(J \subset \mathbb{R} \) es un intervalo, con \(0 \in J - J \), y \(\alpha, \beta : J \subset \mathbb{R} \to V \) son aplicaciones continuas, con \(\alpha(t) \neq a \), \(\beta(t) \neq a \) para todo \(t \in J \) y \(\lim_{t \to 0} \alpha(t) = \lim_{t \to 0} \beta(t) = a \). Si \(\lim_{t \to 0} f(\alpha(t)) \neq \lim_{t \to 0} f(\beta(t)) \) entonces \(\lim_{x \to a} f(x) \) no existe.

Ejemplo. Sea \(f : \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R} \) dada por \(f(x, y) = \frac{xy}{x^2 + y^2} \). Entonces \(f \) no es uniformemente continua en todo conjunto \(X \subset \mathbb{R}^2 \) tal que \((0,0) \in X' \), pues \(\lim_{(x,y) \to (0,0)} f(x, y) \) no existe.

Para ver que \(\lim_{(x,y) \to (0,0)} f(x, y) \) no existe usamos la observación arriba.

Se tiene que \(\lim_{t \to 0} f((0,0) + t(1,0)) = \lim_{t \to 0} f(t,0) = \lim_{t \to 0} \frac{0}{t^2 + 0} = 0 \).

Teorema 4.8 Sea \(f : X \subset V \to \mathbb{R}^m \) una aplicación uniformemente continua. Entonces existe una aplicación uniformemente continua \(\bar{f} : \overline{X} \to \mathbb{R}^m \) tal que \(\bar{f}/X = f \) (esto es, toda aplicación uniformemente continua puede ser extendida a una aplicación uniformemente continua definida en la clausura de su conjunto de definición).

Demostración. Como \(\overline{X} = X \cup X' \), y para cada \(\bar{x} \in X' - X \) se tiene que \(\lim_{x \to \bar{x}} f(x) \) existe, definimos \(\bar{f}(\bar{x}) = \lim_{x \to \bar{x}} f(x) \). Es claro que \(\bar{f}(\bar{x}) = f(\bar{x}) \) para cada \(\bar{x} \in X \). Luego, \(\bar{f} : \overline{X} \to \mathbb{R}^m \) satisface \(\bar{f}/X = f \). Además es claro que \(\bar{f} \) está bien definida, por unicidad del límite.

Vamos a probar ahora que \(\bar{f} \) es uniformemente continua. Como \(f \) es uniformemente continua en \(X \), dado \(\varepsilon > 0 \) existe \(\delta > 0 \) tal que si \(x, y \in X \), con \(N(x - y) < \delta \), entonces \(||f(x) - f(y)|| < \varepsilon \). Sean \(\bar{x}, \bar{y} \in \overline{X} \) tales que \(N(\bar{x} - \bar{y}) < \delta \), entonces existen sucesiones \((x_k)_{k \in \mathbb{N}} \) e \((y_k)_{k \in \mathbb{N}} \) en \(X \), con \(\lim_{k \to \infty} x_k = \bar{x} \) y \(\lim_{k \to \infty} y_k = \bar{y} \). Ahora, como \(N(\bar{x} -
\(\bar{y} < \delta \) se tiene que existe \(k_0 \in \mathbb{N} \) tal que para cada \(k \geq k_0 \) se tiene que \(N(x_k - y_k) < \delta \), y por lo tanto \(|| f(x_k) - f(y_k) || < \varepsilon/2 \). Ahora, \(\lim_{k \to \infty} f(x_k) - \lim_{k \to \infty} f(y_k) \) se tiene \(|| f(x_k) - f(y_k) || \leq \varepsilon/2 < \varepsilon \), esto es, si \(\bar{x}, \bar{y} \in \overline{X} \) son tales que \(N(\bar{x} - \bar{y}) < \delta \) entonces \(\lim_{k \to \infty} f(x_k) = \lim_{k \to \infty} f(y_k) \) entonces \(\lim_{k \to \infty} f(x_k) - \lim_{k \to \infty} f(y_k) \leq \varepsilon/2 < \varepsilon \, y \) la prueba está completa.

Nota. Sea \((a, b) \in \mathbb{R}^2\), supongamos que \(f \) es una función definida en una vecindad de \((a, b)\) a valores reales, entonces el límite \(\lim_{y \to b} f(x, y) \) si existe, es una función de \(x \), digamos \(\phi(x) \). Si además, existe \(\lim_{x \to a} \phi(x) \) y es igual a \(\alpha \), escribimos \(\lim_{x \to a, y \to b} f(x, y) = \alpha \), y decimos que \(\alpha \) es el límite iterado de \(f \) cuando \(y \to b \) y \(x \to a \). De modo análogo se define el límite iterado \(\lim_{y \to b} \lim_{x \to a} f(x, y) = \beta \), cuando existe \(\lim_{x \to a} f(x, y) = \psi(y) \) y existe \(\lim_{y \to b} \psi(y) = \beta \). Observamos que esto puede extenderse de modo natural a funciones de más de dos variables.

Ahora, si \(f : X \subset \mathbb{R}^2 \to \mathbb{R} \) y \((a, b) \in X'\), entonces la existencia de \(\lim_{(x, y) \to (a, b)} f(x, y) \) no implica la existencia de los límites iterados \(\lim_{y \to b} \lim_{x \to a} f(x, y) \) y \(\lim_{x \to a} \lim_{y \to b} f(x, y) \). Observemos también que la existencia de los límites iterados, aún cuando sean iguales, no implican la existencia del límite de una función, como se muestra en los ejemplos a seguir. Es claro que si los límites iterados no existen entonces no existe el límite de una función, esto último se usa para probar la no existencia de un límite.

Ejemplos.

1. Sea \(f : \mathbb{R}^2 - \{(0, 0)\} \to \mathbb{R} \) definida por \(f(x, y) = \frac{xy}{x^2 + y^2} \). Tenemos que \(\lim_{y \to 0} \lim_{x \to 0} f(x, y) = \lim_{y \to 0} 0 = 0 \) y \(\lim_{x \to 0} \lim_{y \to 0} f(x, y) = \lim_{x \to 0} 0 = 0 \), pero \(\lim_{(x, y) \to (0, 0)} f(x, y) \) no existe, como puede ser verificado usando caminos del tipo \(y = mx \).
2. Sea \(f(x, y) = \frac{y-x}{y+x} + \frac{1+x}{1+y} \) (determine el dominio de \(f \)), entonces
\[
\lim_{x \to 0} f(x, y) = -\lim_{x \to 0} \frac{1+x}{1+y} = -1 \quad \text{y} \quad \lim_{y \to 0} f(x, y) = \lim_{y \to 0} \frac{1}{1+y} = 1.
\]
Como los dos límites iterados son distintos se tiene que no existe
\[
\lim_{(x,y) \to (0,0)} f(x, y).
\]

3. Sea \(f : \mathbb{R}^2 \to \mathbb{R} \) definida por
\[
f(x, y) = \begin{cases}
 x \sin(1/y) + y \sin(1/x) & \text{si } xy \neq 0 \\
 0 & \text{si } xy = 0.
\end{cases}
\]

Tenemos que \(\lim_{y \to 0} f(x, y) \) y \(\lim_{x \to 0} f(x, y) \) no existen, como es fácil de ver, por lo tanto \(\lim_{x \to 0} \lim_{y \to 0} f(x, y) \) y \(\lim_{y \to 0} \lim_{x \to 0} f(x, y) \) no existen.

Por otra parte, afirmamos que \(\lim_{(x,y) \to (0,0)} f(x, y) = 0 \).

En efecto, tenemos que
\[
\left| y \sin \left(\frac{1}{y} \right) + y \sin \left(\frac{1}{x} \right) \right| \leq |x| + |y| \leq 2 \sqrt{x^2 + y^2} \leq \varepsilon
\]

(cualquier \(\varepsilon > 0 \) dado, existe \(\delta = \frac{\varepsilon}{2} \), de modo que tenemos
\[
|y \sin(1/y) + y \sin(1/x)| \leq \varepsilon \quad \text{cualquier} \ |x| \leq \delta \quad \text{y} \quad |y| \leq \delta,
\]
lo que prueba que
\[
\lim_{(x,y) \to (0,0)} f(x, y) = 0.
\]

4.1 Ejercicios

1. Determine si las siguientes funciones tienen límite en los puntos que se indican

2. Demuestra que
\[
(a) \quad \lim_{(x,y) \to (0,0)} \frac{\sqrt{x^2 y^2 + 1} - 1}{x^2 + y^2} = 0,
\]
(b) \[\lim_{(x,y) \to (0,0)} \left(\frac{1}{|x|} + \frac{1}{|y|} \right) = \infty , \]

(c) \[\lim_{(x,y) \to (0,0)} \frac{xy^2}{x^2 + y^2} = 0 , \]

(d) \[\lim_{(x,y) \to (0,0)} \frac{1}{xy} \sin(x^2 y + xy^2) = 0 . \]

3. Muestre que no existen los límites en los siguientes caso:

(a) \[\lim_{(x,y) \to (0,0)} \frac{2xy}{x^2 + y^2} , \]

(b) \[\lim_{(x,y) \to (0,0)} \frac{xy^3}{x^2 + y^2} , \]

(c) \[\lim_{(x,y) \to (0,0)} \frac{x^2 y^2}{x^2 y^2 + (x^2 - y^2)^2} , \]

(d) \[\lim_{(x,y) \to (0,0)} \frac{x^2 + y^2}{x - y} . \]

4. Estudie la existencia de los límites de las siguientes funciones en el punto indicado.

(a) \[f(x, y) = 2xy \frac{x^2 - y^2}{x^2 + y^2} \text{ en } (0,0) , \]

(b) \[f(x, y) = \frac{\sin(x) - \sin(y)}{x - y} \text{ en } (0,0) \]

(c) \[f(x, y) = \frac{xy^2}{x^2 + y^4} \text{ en } (0,0) . \]

5. Calcular si es posible, los siguientes límites

(a) \[\lim_{(x,y) \to (0,0)} \frac{\sin(x^2 + y^2)}{x^2 + y^2} \]

(b) \[\lim_{(x,y) \to (0,0)} \frac{e^{xy} - 1}{x} \]

(c) \[\lim_{(x,y) \to (0,0)} \frac{x^2}{x^2 + y^2} \]

(d) \[\lim_{(x,y) \to (0,0)} \frac{x^2 y}{x^2 + y^2} \]
(e) Calcular \(\lim_{(x,y) \to (0,0)} f(x, y) \), donde \(f(x, y) = \begin{cases} 1 & \text{si } x \leq 0 \text{ ó } y \leq 0 \\ 0 & \text{en otro caso.} \end{cases} \)

(f) \(\lim_{(x,y) \to (0,0)} \frac{xy}{x^2 + y^2 + 2} \)

(g) \(\lim_{(x,y) \to (0,0)} \frac{e^{xy}}{x + 1} \)

(h) \(\lim_{(x,y) \to (0,0)} \frac{xy}{\sqrt{x^2 - y^2}} \)

(i) \(\lim_{(x,y) \to (0,0)} \frac{x^2 + y^2}{x^2 + y^2} \)

(j) \(\lim_{(x,y) \to (0,0)} \frac{xy^2}{(x^2 + y^2)\sqrt{x^2 + y^2}} \)

(k) \(\lim_{(x,y) \to (0,0)} \frac{x^2 + y^2}{x - y} \)

(l) \(\lim_{(x,y,z) \to (0,0)} \frac{\sin(x^2 + y^2 + z^2)}{x} \)

(m) \(\lim_{(x,y) \to (0,0)} \frac{x^3 + y^3}{x^2 + y} \)

(n) \(\lim_{(x,y) \to (0,0)} \frac{x^6y^3}{x^{12} + y^6} \)

(o) \(\lim_{(x,y) \to (0,0)} \frac{x^3y^3}{x^2 + y^2} \)

(p) \(\lim_{(x,y) \to (0,0)} \frac{\sin(xy)}{x} \)

6. Dada la función \(f(x, y) = \frac{(x-3)^2+y^2}{(x-3)^2+y^2} \), ¿existe \(\lim_{(x,y) \to (3,0)} f(x, y) \) ?

7. Usando de la definición de límite pruebe que \(\lim_{(x,y) \to (1,2)} (x+y^2) = 5 \).

8. Demuestre que los límites siguientes existe

(a) \(\lim_{(x,y) \to (0,0)} \frac{xy}{\sqrt{x^2 + y^2}} \)

(b) \(\lim_{(x,y) \to (0,0)} \frac{x^3y^3}{x^2 + y^2} \).
(c) \(\lim_{(x, y) \to (0,0)} \frac{x^2 - y^2}{x^2 + y^2} \),

(d) \(\lim_{(x, y) \to (0,0)} \frac{x^4 + y^4}{x^2 + y^2} \).

9. Demuestre que:

(a) \(\lim_{(x, y) \to (0,0)} \frac{x \sen(x^2 + y^2)}{x^2 + y^2} = 0 \),

(b) \(\lim_{(x, y) \to (2,1)} \frac{\arcsen(xy - 2)}{\arctan(3xy - 6)} = \frac{1}{3} \).

10. Demuestre que \(\lim_{(x, y) \to (0,1)} \arctan \left(\frac{y}{x} \right) \) no existe.

11. Pruebe que

(a) \(\lim_{(x, y) \to (0,0)} x^2 \sen \left(\frac{y}{x} \right) = 8\sqrt{2} \),

(b) \(\lim_{(x, y) \to (0,1)} e^{-1/(x^2(y-1)^2)} = 0 \),

(c) \(\lim_{(x, y) \to (0,1)} \frac{x + y - 1}{\sqrt{x} - \sqrt{1-y}} = 0 \), donde \(x > 0 \) e \(y < 1 \).

12. Sea \(f(x, y) = \frac{xy}{x^2 + y^2} \), definida en \(\mathbb{R}^2 \setminus \{(0,0)\} \). Pruebe que

\(\lim_{y \to 0} \lim_{x \to 0} f(x, y) = \lim_{x \to 0} \lim_{y \to 0} f(x, y) \) existen, pero no existe \(\lim_{(x,y) \to (0,0)} f(x, y) \).

13. Sea \(f(x, y) = \frac{y - x}{y + x} \). Pruebe que \(\lim_{y \to 0} \lim_{x \to 0} f(x, y) = -1 \) y que \(\lim_{x \to 0} \lim_{y \to 0} f(x, y) = 1 \). Deduzca de esto que no existe \(\lim_{(x,y) \to (0,0)} f(x, y) \).

14. Muestre que los límites iterados existen en el origen y son iguales, pero no existe el límite para la siguiente función

\[f(x, y) = \begin{cases}
1 & \text{si } xy \neq 0 \\
0 & \text{si } xy = 0.
\end{cases} \]
15. Muestre que \(\lim_{(x,y) \to (0,0)} f(x, y) \) y \(\lim_{x \to 0} \lim_{y \to 0} f(x, y) \) existen, pero no existe \(\lim_{x \to 0} \lim_{y \to 0} f(x, y) \), donde
\[
f(x, y) = \begin{cases}
y + x \sin \left(\frac{1}{y} \right) & \text{si } y \neq 0 \\
0 & \text{si } y = 0.
\end{cases}
\]

16. Demuestre que los límites iterados existen, pero no existe el límite cuando \((x, y) \to (0, 0)\) para las siguientes funciones:

 (a) \(f(x, y) = \frac{x - y}{x + y} \)

 (b) \(f(x, y) = \frac{x^2 y^2}{x^4 + y^4 - x^2 y^2} \)

 (c) \(f(x, y) = \begin{cases}
\frac{x^3 + y^3}{x - y} & \text{si } x \neq y \\
0 & \text{si } x = y
\end{cases} \)

 (d) \(f(x, y) = \begin{cases}
\frac{x^2 - y^2}{x^2 + y^2} & \text{si } x \neq y \\
0 & \text{si } x = y
\end{cases} \)

17. Muestre que existen el límite y los límites iterados cuando \((x, y) \to (0, 0)\) existen para
\[
f(x, y) = \begin{cases}
x y \frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases}
\]

18. Muestre que \(\lim_{(x,y) \to (0,0)} \frac{2xy^2}{x^2 + y^4} \) no existe.

19. Muestre que \(\lim_{(x,y) \to (0,0)} f(x, y) \) no existe, donde
\[f(x, y) = \begin{cases}
\frac{x^2 y}{x^4 + y^2} & \text{si } x^4 + y^2 \neq 0 \\
0 & \text{si } (x, y) = (0, 0)
\end{cases} \]

20. Demuestre que \(\lim_{(x,y) \to (0,0)} \frac{xy^2}{x^2 + y^2} = 0 \).

21. Demuestre que \(\lim_{(x,y) \to (0,0)} \frac{1}{xy} \frac{\text{sen}(x^2 y + xy^2)}{x^2 y + xy^2} = 0 \).
Límite de Aplicaciones
Capítulo 5

Propiedades Básicas de las Aplicaciones Continuas

En este capítulo estudiaremos algunas propiedades básicas de las aplicaciones continuas

Teorema 5.1 Sea \(f : X \subset \mathbb{R}^m \rightarrow \mathbb{R}^n \) una aplicación continua y sea \(K \subset X \) un conjunto compacto. Entonces

a) \(f(K) \subset \mathbb{R}^n \) es un conjunto compacto.

b) \(f|K \) es uniformemente acotada, es decir, existe una constante \(M > 0 \) tal que \(||f(x)|| \leq M \) para todo \(x \in K \).

c) \(f|K \) es una aplicación cerrada, es decir, si \(C \subset K \) es un conjunto cerrado en \(K \) entonces \(f(C) \) es un conjunto cerrado en \(f(K) \).

d) Si \(n = 1 \). Entonces \(f|K \) alcanza su máximo y su mínimo en \(K \), es decir, existen \(x_0, x_1 \in K \) tales que \(f(x_0) \leq f(x) \leq f(x_1) \) para todo \(x \in K \).
e) Si \(n = 1 \) y \(f(x) > 0 \) para todo \(x \in K \) entonces existe \(\varepsilon > 0 \) tal que \(f(x) \geq \varepsilon \) para todo \(x \in K \).

Demostración. a) Vamos a demostrar primero que \(f(K) \) es cerrado. Sea \(y \in \mathbb{R}^n \) un punto adherente a \(f(K) \), entonces existe una sucesión \((y_k)_{k \in \mathbb{N}} \) en \(f(K) \), con \(\lim_{k \to \infty} y_k = y \). Como \(y_k \in f(K) \), existe \(x_k \in K \) tal que \(f(x_k) = y_k \) para todo \(k \in \mathbb{N} \). Luego, tenemos una sucesión \((x_k)_{k \in \mathbb{N}} \) en \(K \), por lo tanto existe una subsucesión \((x_{k_j})_{j \in \mathbb{N}} \) de \((x_k)_{k \in \mathbb{N}} \), con \(\lim_{j \to \infty} x_{k_j} = x \), y \(x \in K \). De aquí, \(y = \lim_{j \to \infty} f(x_{k_j}) = f(\lim_{j \to \infty} x_{k_j}) = f(x) \), es decir, \(y = f(x) \), con \(x \in K \), por lo tanto \(y \in f(K) \), en consecuencia \(f(K) \) contiene todos sus puntos adherentes, y por lo tanto es cerrado.

Ahora demostraremos que \(f(K) \) es acotado. Supongamos que no, entonces existen \(x_k \in K \) tales que \(||f(x_k)|| \geq k \), para todo \(k \in \mathbb{N} \), es decir, \((f(x_k))_{k \in \mathbb{N}} \) no posee subsucesiones convergentes. Ahora, como \(x_k \in K \) para todo \(k \in \mathbb{N} \), la sucesión \((x_k)_{k \in \mathbb{N}} \) posee una subsucesión convergente, digamos \((x_{k_j})_{j \in \mathbb{N}} \), con \(\lim_{j \to \infty} x_{k_j} = x \), y \(x \in K \). Por la continuidad de \(f \) se tiene que \(f(x) = f(\lim_{j \to \infty} x_{k_j}) = \lim_{j \to \infty} f(x_{k_j}) \), es decir, \((f(x_{k_j}))_{j \in \mathbb{N}} \) es una subsucesión de \((f(x_k))_{k \in \mathbb{N}} \) la cual es convergente. Esto es una contradicción, por lo tanto \(f(K) \) es acotado.

b) Sea \(C \subset K \) un conjunto cerrado. Como \(K \) es compacto, en particular es acotado, por lo tanto \(C \) es acotado, es decir, \(C \) es cerrado y acotado, por lo tanto compacto. De la parte a) se tiene que \(f(C) \subset f(K) \) es compacto, por lo tanto es cerrado.

c) Si \(n = 1 \), entonces \(f : X \subset \mathbb{R}^m \to \mathbb{R} \). Como \(K \subset X \) es compacto, se tiene que \(f(K) \subset \mathbb{R} \) es compacto, por lo tanto cerrado y acotado en \(\mathbb{R} \). Luego, existen \(y_0 = \inf\{f(x) : x \in K\} \) y \(y_1 = \sup\{f(x) : x \in K\} \), y es claro por la definición de ínfimo y supremo que \(y_0 \) e \(y_1 \)
son puntos adherentes a \(f(K) \), luego \(y_0, y_1 \in f(K) \), de donde existen \(x_0, x_1 \in K \) tales que \(f(x_0) = y_0 \) y \(f(x_1) = y_1 \). Además, es claro que \(f(x_0) \leq f(x) \leq f(x_1) \) para todo \(x \in K \).

b) Sean \(\pi_i : \mathbb{R}^m \to \mathbb{R} \) las proyecciones \(\pi_i(x_1, \ldots, x_m) = x_i \) \((i = 1, \ldots, n)\). Estas aplicaciones son continuas. Luego, para cada \(i = 1, \ldots, n \) se tiene que \(f_i(K) = (\pi_i \circ f)(K) \) es un conjunto compacto en \(\mathbb{R} \), y \(f_i \) alcanza su máximo y su mínimo en \(K \). Por lo tanto, \(f_i(K) = [c_{i\text{min}}, c_{i\text{max}}] \), donde \(c_{i\text{min}} = \inf\{ f_i(x) : x \in K \} \) y \(c_{i\text{max}} = \sup\{ f_i(x) : x \in K \} \) \((c_{i\text{min}}, c_{i\text{max}} \in f(K)) \). Sea \(c_i \in \mathbb{R} \) tal que \([c_{i\text{min}}, c_{i\text{max}}] \subset [-c_i, c_i] \). Entonces \(f(K) \subset \pi_1^{-1}([-c_1, c_1]) \cap \cdots \cap \pi_n^{-1}([-c_n, c_n]) \). En \(\mathbb{R}^n \) tomamos la norma del máximo, se tiene entonces que \(f(K) \subset B[0, c] \), donde \(c = \max\{c_1, \ldots, c_n\} \) y como vimos anteriormente \(B[0, c] = [-c, c] \times \cdots \times [-c, c] \).

e) Tenemos que \(f : X \subset \mathbb{R}^m \to \mathbb{R} \). Sea \(\varepsilon = \inf\{ f(x) : x \in K \} \). Afiramos que \(\varepsilon > 0 \). Si no, existe \(x_0 \in K \) tal que \(0 = f(x_0) \leq f(x) \) para todo \(x \in K \), esto es una contradicción. Por lo tanto, \(\varepsilon > 0 \), y es claro que \(f(x) \geq \varepsilon \) para todo \(x \in K \).

Esto completa la prueba de teorema.

Ejemplos. La parte d) del Teorema anterior es falsa si \(K \) no es compacto. Por ejemplo, la aplicación \(f :]0, \infty[\to]0, \infty[\) dada por \(f(x) = 1/x \), se tiene que \(f \) es continua y no alcanza ni su mínimo ni su máximo en el dominio de definición.

La parte e) es falsa si \(K \) no es compacto. Por ejemplo consideremos la aplicación \(f :]0, \infty[\to]0, \infty[\) dada por \(f(x) = 1/x \). Es claro \(f \) es continua y \(f(x) > 0 \) para todo \(x \in]0, \infty[\), pero no existe \(\varepsilon > 0 \) tal que \(f(x) \geq \varepsilon \) para todo \(x \in]0, \infty[\).
Corolario 5.2 Sea $K \subset \mathbb{R}^m$ un conjunto compacto, y sea $f : K \rightarrow \mathbb{R}^n$ una aplicación continua e inyectiva. Entonces $f^{-1} : f(K) \rightarrow K$ es continua (es decir, $f : K \rightarrow f(K)$ es un homeomorfismo desde el conjunto compacto K en el conjunto compacto $L = f(K)$).

Demostración. Como f es inyectiva, se sigue que $f : K \rightarrow f(K)$ es una biyección, por lo tanto existe $f^{-1} : f(K) \rightarrow K$. Sea $C \subset K$ un conjunto cerrado, entonces como $(f^{-1})^{-1}(C) = f(C)$, y siendo f continua se sigue que $f(C)$ es cerrado en $f(K)$, por lo tanto $(f^{-1})^{-1}(C)$ es cerrado, y en consecuencia f^{-1} es continua.

Corolario 5.3 Sea $C \subset \mathbb{R}^m$ un conjunto cerrado, y sea $f : C \rightarrow \mathbb{R}^n$ una aplicación continua. Si $F \subset f(C)$ es tal que $f^{-1}(F)$ es un conjunto cerrado en C entonces F es un conjunto cerrado.

Demostración. Como $f : C \rightarrow f(C)$ es sobreyectiva, se sigue que $f(f^{-1}(F)) = F$ es cerrado en $f(C)$, pues f es continua y $f^{-1}(F) \subset C$ cerrado implican el resultado.

Corolario 5.4 Sea $K \subset \mathbb{R}^m$ un conjunto compacto, y sea $f : K \rightarrow \mathbb{R}^n$ una aplicación continua. Entonces una aplicación $g : f(K) \rightarrow \mathbb{R}^p$ es continua si, y sólo si, la aplicación compuesta $g \circ f : K \rightarrow \mathbb{R}^p$ es continua.

Demostración. (\Rightarrow) Inmediata, pues f y g continuas implican que $g \circ f$ es continua.

(\Leftarrow) Sea $C \subset \mathbb{R}^p$ un conjunto cerrado. Se tiene que $(g \circ f)^{-1}(C) \subset K$ es un conjunto cerrado, por lo tanto compacto. Luego, $f((g \circ f)^{-1}(C)) \subset f(K)$ es un conjunto compacto, en particular, cerrado. Tenemos por otra parte que $f((g \circ f)^{-1}(C)) = g^{-1}(C)$, lo que finaliza la prueba.
Ejemplo. Sea \(g : [0, 2\pi] \to \mathbb{R}^n \) una aplicación continua, con \(g(0) = g(2\pi) \). Sea \(S^1 = \{(\cos(\theta), \sin(\theta)) : 0 \leq \theta \leq 2\pi\} \) la esfera unitaria en \(\mathbb{R}^2 \). Definamos \(f : S^1 \to \mathbb{R}^n \) por \(f(\cos(\theta), \sin(\theta)) = g(\theta) \). Es claro que \(f \) está bien definida. Ahora, sea \(\exp : [0, 2\pi] \to S^1 \) la aplicación dada por \(\exp(\theta) = (\cos(\theta), \sin(\theta)) \). Es claro que \(\exp \) es continua. Como \(f \circ \exp = g \) se tiene que \(f \) es continua.

Teorema 5.5 Sea \(K \subset \mathbb{R}^m \) un conjunto compacto, y sea \(f : K \to \mathbb{R}^n \) una aplicación continua. Entonces \(f \) es uniformemente continua en \(K \).

Demostración. Supongamos que \(f \) no es uniformemente continua en \(K \). Entonces existe \(\varepsilon > 0 \) tal que para cada \(k \in \mathbb{N} \) existen \(x_k, y_k \in K \), con \(||x_k - y_k|| < 1/k \) y \(||f(x_k) - f(y_k)|| \geq \varepsilon \). Esto define sucesiones \((x_k)_{k \in \mathbb{N}}\) e \((y_k)_{k \in \mathbb{N}}\) en \(K \). Tomando subsucesiones, si es necesario, podemos suponer que existe \(\lim_{k \to \infty} y_k = y_0 \), tenemos que \(y_0 \in K \). Ahora, como para todo \(k \in \mathbb{N} \) se tiene que \(||x_k - y_k|| < 1/k \), se sigue que \(\lim_{k \to \infty} x_k = y_0 \). Por la continuidad de \(f \) tenemos que \(\varepsilon \leq \lim_{k \to \infty} ||f(x_k) - f(y_k)|| = ||f(\lim_{k \to \infty} x_k) - f(\lim_{k \to \infty} y_k)|| = ||f(y_0) - f(y_0)|| = 0 \), esto es una contradicción, y la prueba está completa.

Teorema 5.6 La imagen de un conjunto conexo \(S \subset V \) por una aplicación continua \(f : V \to W \) es un conjunto conexo.

Demostración. Si \(f(S) \) no es conexo, existe un conjunto abierto y cerrado \(B \subset f(S) \), no vacío y diferente de \(f(S) \). Considerando el conjunto \(A = f^{-1}(B) \cap S \), se tiene que \(A \) es abierto y cerrado en \(S \), pues \(f \) es continua. Además, \(A \neq S \) y \(A \neq \emptyset \), pues \(B \neq \emptyset \) y \(f : S \to f(S) \) es sobreyectiva. Esto contradice la conexidad de \(S \).
Teorema 5.7 Sea $S \subset V$ un conjunto conexo, y sea $f : V \to \mathbb{R}$ una aplicación continua. Entonces $f(S)$ es un intervalo.

Demostración. Por la proposición anterior, tenemos que $f(S) \subset \mathbb{R}$ es un conjunto conexo. Como los únicos conjunto conexo de \mathbb{R} son los intervalos, se sigue el resultado.

5.1 Caminos

Sea $X \subset V$ un conjunto no vacío. Un camino en X es una aplicación continua $\alpha : [0, 1] \to X$ (de hecho podemos tomar cualquier intervalo $[a, b]$ en \mathbb{R} en vez del intervalo $[0, 1]$, pero los resultados que vamos a demostrar no varían en nada). Los puntos $a = \alpha(0)$ y $b = \alpha(1)$ son llamados los puntos extremos del camino α, $a = \alpha(0)$ es el punto inicial y $b = \alpha(1)$ es el punto final, y decimos que α une a con b.

Definición 5.1 Decimos que $X \subset V$ es conexo por caminos si, dados dos puntos cualesquiera $a, b \in X$ existe un camino $\alpha : [0, 1] \to X$ con $\alpha(0) = a$ y $\alpha(1) = b$.

Ejemplos.

1. Todo espacio vectorial normado V es conexo por caminos.

 En efecto, sean $a, b \in V$, entonces $\alpha : [0, 1] \to V$ dado por $\alpha(t) = (1 - t)a + tb$ es un camino que une a con b. La imagen de este camino α, $\alpha([0, 1])$, es el segmento de recta que une a con b.

2. Todo subconjunto convexo de un espacio vectorial normado es conexo por caminos. En particular, toda bola (abierta o cerrada) es un conjunto conexo por caminos.
3. $\mathbb{R} - \{0\}$ no es conexo por caminos, pues dados $x, y \in \mathbb{R}$, con $x < 0 < y$, no existe ningún camino en $\mathbb{R} - \{0\}$ que los una.

4. Decimos que $E \subset V$ es estrellado en $p \in E$ si, para cada $x \in E$ se tiene que el segmento de recta $\{(1 - t)p + tx : t \in [0, 1]\}$, que une p y x está contenido en E.

Afirmamos que todo conjunto estrellado es conexo por caminos.

En efecto, primero definimos el producto de caminos como sigue: sean $\alpha, \beta : [0, 1] \to X$ dos caminos, con $\alpha(1) = \beta(0)$ (es decir, donde α termina comienza β). El camino producto, denotado por $\alpha * \beta$, es dado por

$$
(\alpha * \beta)(t) = \begin{cases}
\alpha(2t) & 0 \leq t \leq 1/2 \\
\beta(2t - 1) & 1/2 \leq t \leq 1.
\end{cases}
$$

Notemos que para $t = 1/2$ se tiene que $\alpha(2 \cdot 1/2) = \alpha(1)$ y $\beta(2 \cdot 1/2 - 1) = \beta(0)$, como $\alpha(1) = \beta(0)$, para mostrar que $\alpha * \beta$ es continuo usamos el siguiente lema.

Lema 5.1 (Gluing Lemma) Si $X = A \cup B$, con A y B, conjuntos abiertos (respectivamente, cerrados), y $f : A \to W$, $g : B \to W$ son aplicaciones continuas tales que $f/(A \cap B) = g/(A \cap B)$, entonces la aplicación $h : X \to W$ definida por

$$
h(x) = \begin{cases}
f(x) & si \ x \in A \\
g(x) & si \ x \in B
\end{cases}
$$

es continua.

Demostración. Sea $O \subset W$ un conjunto abierto. Entonces $h^{-1}(O) = h^{-1}(O) \cap (A \cup B) = (h^{-1}(O) \cap A) \cup (h^{-1}(O) \cap B) = f^{-1}(O) \cup g^{-1}(O)$,
como f y g son continuas, se sigue que $f^{-1}(O) \cap A$ es un conjunto abierto en A y $g^{-1}(O) \cap B$ es un conjunto abierto en B, y como A y B son conjuntos abiertos se sigue que $f^{-1}(O)$ y $g^{-1}(O)$ son conjunto abiertos en X, por lo tanto $h^{-1}(O)$ es un conjunto abierto, y la prueba del lema está completa en este caso. Si A y B son conjuntos cerrados, la prueba es completamente análoga.

Nota. En el lema anterior puede ocurrir que $A \cap B$ sea el conjunto vacío.

Del lema se sigue que el camino producto es continuo.

Ahora, si E es estrellado en $p \in E$. Dados $x, y \in E$, los caminos $\alpha(t) = (1 - t)x + tp$ y $\beta(t) = (1 - t)p + ty$ une, respectivamente, x con p, y p con y. Por lo tanto el camino producto $\alpha * \beta$ une x con y.

Ejemplos de conjuntos estrellados son las bolas, estas son estrelladas en cualquiera de sus puntos. Los conjuntos convexos son estrellados. Es fácil construir ejemplos de conjuntos estrellados, pero no convexo.

Teorema 5.8 Todo conjunto abierto y conexo es conexo por caminos.

Demostración. Sea $U \subset V$ un conjunto abierto y conexo. Sea $x_0 \in U$. Definamos el conjunto

$$A = \{x \in U : \text{existe un camino } \alpha : [0,1] \to U, \text{ con } \alpha(0) = x_0$$

$$y \ \alpha(1) = x \}.\$$

Como $x_0 \in A$ se tiene que $A \neq \emptyset$. Afirmamos que A y $U - A$ son conjunto abiertos.

Primero vamos a demostrar que A es abierto. Si $y \in A$ entonces existe un camino $\alpha : [0,1] \to U$ tal que $\alpha(0) = x_0$ y $\alpha(1) = y$. Ahora, como U es abierto, existe $r > 0$ tal que $B(y,r) \subset U$. Como las
bolas son conjuntos conexos por caminos, dado \(z \in B(y, r) \) existe un camino \(\beta : [0, 1] \to B(y, r) \) dado por \(\beta(t) = (1 - t)y + tz \) que une \(y \) con \(z \). Luego, el camino producto \(\alpha \ast \beta \) une \(x_0 \) con \(z \), por lo tanto \(B(y, r) \subset A \), y se tiene que \(A \) es abierto.

Ahora probaremos que \(U - A \) es abierto. Si \(y \in U - A \) entonces como \(U \) es abierto existe \(\delta > 0 \) tal que \(B(y, \delta) \subset U \). Afirmamos que \(B(y, \delta) \subset U - A \). Si no, existe \(z \in B(y, \delta) \), con \(z \in A \), por lo tanto podemos unir \(x_0 \) con \(z \), y consecuentemente unimos \(x_0 \) con \(y \), esto es una contradicción. Por lo tanto, \(B(y, \delta) \subset U - A \), es decir, \(U - A \) es un conjunto abierto.

Ahora como \(U \) es conexo y \(U = A \cup (U - A) \), y \(A \neq \emptyset \), se sigue que \(U - A = \emptyset \), de donde \(U = A \) como queríamos probar.

Ejemplo. Sea \(E \subset \mathbb{R}^2 \) el siguiente conjunto:

\[
E = \{(x, \sin(1/x)) : 0 < x \leq \pi \} \cup \{(0, y) : -1 \leq y \leq 1\}.
\]

No es difícil probar que \(E \) es conexo, pero no conexo por caminos.

5.2 Ejercicios

1. Pruebe que el producto de dos caminos continuos \(\alpha, \beta : [0, 1] \to V \) es un camino continuo.

2. Pruebe que si \(S \subset V \) es un conjunto conexo y \(f : V \to \mathbb{R} \) es continua, entonces \(f(S) \) es un intervalo.
Propiedades Básicas de las Aplicaciones Continuas
Capítulo 6

Cálculo Diferencial en
Espacios Euclideanos

En este capítulo estudiaremos el cálculo diferencial en espacios euclideanos, nuestro objetivo es estudiar el Teorema de la Función Inversa y sus Corolarios: Teorema de la Función Implícita, Teorema de la Forma Local de las Inmersiones y Teorema de la Forma Local de las Submersiones, y Teorema del Rango.

6.0.1 Notaciones Básicas

En lo que sigue \(\mathbb{R} \) denotará el cuerpo de los números reales, y \(\mathbb{R}^n \) producto cartesiano de \(n \) copias de \(\mathbb{R} \), esto es, \(\mathbb{R}^n = \{ x = (x_1, x_2, \ldots, x_n) : x_i \in \mathbb{R}, i = 1, 2, \ldots, n \} \).

En \(\mathbb{R}^n \) consideramos cualesquiera de las tres normas \(|| \cdot ||, \| \|_S, \| \|_M \), estas son las más usuales, donde para \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \),

\[
||x|| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} = \sqrt{\langle x, x \rangle}
\]

(\(\langle , \rangle \) denota el producto interno usual en \(\mathbb{R}^n \)), y \(||x||_S = \sum_{i=1}^{n} |x_i| \) y
||x||_\mathcal{M} = \max\{|x_i| : i = 1, \ldots, n\}.

6.1 Derivada

Antes de definir la derivada de una aplicación \(f : \mathbb{R}^n \to \mathbb{R}^m \), revisaremos este concepto en el caso de funciones reales de una variable real.

Dados \(a, b \in \mathbb{R} \), con \(a < b \), por \([a, b] \) denotamos el intervalo abierto de extremos \(a \) y \(b \). Si \(f : [a, b] \to \mathbb{R} \). Decimos que \(f \) es diferenciable en un punto \(x \in]a, b[\) si

\[
\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = f'(x)
\]

(6.1)

existe, al valor de este límite lo denotamos por \(f'(x) \) y lo llamamos derivada de \(f \) en el punto \(x \), es decir,

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}.
\]

(6.2)

Observación. Como \(]a, b[\subset \mathbb{R} \) es un conjunto abierto, para cada \(x \in]a, b[\) existe \(\varepsilon > 0 \) tal que si \(|h| < \varepsilon \) entonces \(x + h \in]a, b[\) y por lo tanto \(f(x + h) \) está definida para \(h \in]-\varepsilon, \varepsilon[\).

Notemos que la igualdad (6.2) puede ser escrita como

\[
\lim_{h \to 0} \frac{f(x + h) - f(x) - hf'(x)}{h} = 0
\]

(6.3)

de donde

\[
f(x + h) = f(x) + hf'(x) + r(h), \quad \text{con} \quad \lim_{h \to 0} \frac{r(h)}{|h|} = 0.
\]

(6.4)

Ahora, dado \(a \in \mathbb{R} \) definamos la aplicación lineal \(T_a : \mathbb{R} \to \mathbb{R} \) por \(T_a(v) = av \) (homotecia de razón \(a \), cuando \(a \neq 0 \)). Tomando \(a = f'(x) \), la expresión (6.4) se transforma en

\[
f(x + h) = f(x) + T_a(h) + r(h), \quad \text{con} \quad \lim_{h \to 0} \frac{r(h)}{|h|} = 0
\]

(6.5)
por lo tanto, tenemos que \(f :]a, b[\rightarrow \mathbb{R} \) es diferenciable en \(x \in]a, b[\)

si, y sólo si, existe una transformación lineal, \(T_x : \mathbb{R} \rightarrow \mathbb{R} \), tal que

\[
f(x + h) = f(x) + T_x(h) + r(h) \quad \text{con} \quad \lim_{h \to 0} \frac{r(h)}{|h|} = 0.
\]

Geométricamente esto se expresa en la figura abajo.

\[
\text{(6.6)}
\]

Observaciones:

1. La aplicación lineal \(T_x : \mathbb{R} \rightarrow \mathbb{R} \) que satisface la igualdad (6.6) es \(T_x(h) = hf'(x) \), donde el número \(f'(x) \) es dado por el límite (6.2), cuando éste existe. Claramente, la aplicación lineal \(T_x \) depende del punto \(x \in]a, b[\).

2. Denotemos por \(\mathcal{L}(\mathbb{R}, \mathbb{R}) = \{ L : \mathbb{R} \rightarrow \mathbb{R} : L \text{ aplicación lineal} \} \)

el espacio vectorial de las aplicaciones lineales de \(\mathbb{R} \) en \(\mathbb{R} \). Los espacios vectoriales \(\mathcal{L}(\mathbb{R}, \mathbb{R}) \) y \(\mathbb{R} \) son isomorfos. En efecto, consideremos la aplicación \(\Gamma : \mathbb{R} \rightarrow \mathcal{L}(\mathbb{R}, \mathbb{R}), \Gamma(\lambda) = L_\lambda \), donde \(L_\lambda : \mathbb{R} \rightarrow \mathbb{R} \) es la aplicación lineal \(L_\lambda(v) = \lambda v \). Es fácil ver que \(\Gamma \) es lineal y \(\Gamma(\lambda \cdot \mu) = L_{\lambda \mu} = L_\lambda \circ L_\mu \). Finalmente, un pequeño trabajo muestra que \(\Gamma \) es un isomorfismo.
Ahora sea U un subconjunto abierto de \mathbb{R}^n y sea $f : U \rightarrow \mathbb{R}^m$ una aplicación, entonces para $h \in \mathbb{R}^n$ con $|h|$ pequeño y $x \in U$, la expresión $f(x+h) - f(x)$ tiene sentido, pero no podemos definir la derivada de f en un punto x de U como en (6.1). Por otra parte, la expresión (6.1) es equivalente a (6.4), y esta última tiene sentido considerar en este caso, por lo tanto definimos la derivada de f en un punto $x \in U$ como lo hicimos en (6.4) para el caso de funciones reales de variable real.

Definición 6.1 Sea $U \subset \mathbb{R}^n$ un subconjunto abierto. Decimos que $f : U \rightarrow \mathbb{R}^m$ es diferenciable o derivable en un punto $x \in U$ si existe una aplicación lineal $T_x : \mathbb{R}^n \rightarrow \mathbb{R}^m$, que depende de x, llamada la derivada de f en el punto x, tal que

$$f(x+h) = f(x) + T_x(h) + r(h), \quad \text{con} \quad \lim_{h \rightarrow 0} \frac{r(h)}{|h|} = 0.$$ \hfill (6.7)

Nota. Aquí $| \cdot |$ denota cualquiera de la tres normas que estamos considerando en los espacios euclideanos. Como ellas son equivalentes, la definición anterior no depende de cual norma que consideramos.

Observación. Como $U \subset \mathbb{R}^n$ es un conjunto abierto, existe $\varepsilon > 0$ tal que si $|h| < \varepsilon$ entonces $x + h \in U$, es decir, la bola abierta de centro en x y radio ε, $B(x, \varepsilon) = \{ y \in \mathbb{R}^n : |x - y| < \varepsilon \}$ está contenida en U.

La igualdad $f(x+h) = f(x) + T_x(h) + r(h)$ define el resto $r(h) \in \mathbb{R}^m$, de donde concluimos que la diferenciabilidad de f en un punto $x \in U$ equivale al hecho que el resto $r(h)$ es un infinitesimo de orden no mayor que $|h|$, es decir, $\lim_{h \rightarrow 0} \frac{r(h)}{|h|} = 0$ o más formalmente, dado $\varepsilon > 0$ existe $\delta > 0$, tal que $|r(h)| < \varepsilon$ cuando $0 < |h| < \delta$.

Definamos $\rho(h) = r(h)/|h|$, cuando $h \neq 0$. Podemos escribir ahora la igualdad (6.7) como

$$f(x+h) = f(x) + T_x(h) + |h|\rho(h), \quad \text{con} \quad \lim_{h \rightarrow 0} \rho(h) = 0.$$ \hfill (6.8)
Por lo tanto, si f es diferenciable en x y definimos $\rho(0) = 0$, se tiene que $\rho(h)$ es continua en $h = 0$.

Observemos que para definir la diferenciabilidad de f en un punto $x \in U$ exigimos la existencia de una aplicación lineal $T_x : \mathbb{R}^n \rightarrow \mathbb{R}^m$, la cual nos permite escribir una de las igualdades equivalentes (1.7) o (1.8). La pregunta natural que surge aquí es sobre la unicidad de tal aplicación lineal. Para responder a esto tenemos la siguiente proposición.

Proposición 6.1 *Sea $U \subset \mathbb{R}^n$ un conjunto abierto y $f : U \rightarrow \mathbb{R}^m$ una aplicación diferenciable en $x \in U$. Entonces la aplicación lineal $T_x : \mathbb{R}^n \rightarrow \mathbb{R}^m$ que satisface la igualdad (6.7) (equivalentemente (6.8)) es única.*

Demostración. Supongamos que existe otra aplicación lineal $\tilde{T}_x : \mathbb{R}^n \rightarrow \mathbb{R}^m$ que satisface (6.7) y que $\tilde{T}_x \neq T_x$. Consideremos la aplicación lineal $L = T_x - \tilde{T}_x$. Como $\tilde{T}_x \neq T_x$ se tiene que L no es la aplicación lineal nula, consecuentemente existe $y \in \mathbb{R}^n$ con $y \neq 0$, tal que $|L(y)| = a \neq 0$.

Ahora, dado $b \in \mathbb{R}$ con $b \neq 0$, se tiene

$$\frac{|L(by)|}{|by|} = \frac{|L(y)|}{|y|} = \frac{a}{|y|} \neq 0,$$

como $L(h) = T_x(h) - \tilde{T}_x(h) = r(h) - \tilde{r}(h)$ y $\lim_{h \to 0} (r(h) - \tilde{r}(h))/|h| = 0$, tenemos que

$$\frac{a}{|y|} = \frac{|L(by)|}{|by|} = \frac{|r(by) - \tilde{r}(by)|}{|by|},$$

haciendo $h = by$, tenemos $h \to 0$ cuando $b \to 0$, y de esto

$$0 \neq \frac{a}{|y|} = \lim_{h \to 0} \frac{|r(h) - \tilde{r}(h)|}{|h|} = 0,$$

lo cual es imposible. Por lo tanto $L \equiv 0$, esto es, $T_x = \tilde{T}_x$.
Ahora cambiamos la notación T_x por $Df(x)$ y la dejamos establecida. En general, $Df(x)(h)$ lo denotamos por $Df(x)h$, con esta nueva notación la igualdad (6.7) se escribe como

$$f(x + h) = f(x) + Df(x)h + r(h), \quad \text{con} \quad \lim_{h \to 0} \frac{r(h)}{|h|} = 0. \quad (6.9)$$

Nota. Como toda aplicación lineal $L : \mathbb{R}^n \to \mathbb{R}^m$ es continua, usando (6.8) se sigue que si $f : U \subset \mathbb{R}^n \to \mathbb{R}^m$ es diferenciable en un punto $x \in U$ entonces f es continua en ese punto. Por ejemplo, la función $f : \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x, y) = \begin{cases}
\frac{xy}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases}$$

no es diferenciable en el origen, pues no es continua en ese punto como puede verse fácilmente tomando límite a través de la rectas $y = mx$.

Ejemplos

1. Sea $f : \mathbb{R}^n \to \mathbb{R}^m$ una aplicación constante, $f(x) = c$ para todo $x \in \mathbb{R}^n$. Entonces f es diferenciable y $Df(x) = 0$ para todo $x \in \mathbb{R}^n$.

2. Toda aplicación lineal $T : \mathbb{R}^n \to \mathbb{R}^m$ es diferenciable en cada $x \in \mathbb{R}^n$ y $DT(x) = T$. En efecto, de la linealidad de T se tiene $T(x + h) = T(x) + T(h) + r(h)$, donde hemos tomado $r(h) = 0$ para todo h.

3. Sea $B : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$ una aplicación bilineal, entonces B es diferenciable en cada $(x, y) \in \mathbb{R}^n \times \mathbb{R}^m \equiv \mathbb{R}^{n+m}$ y $DB(x, y)(h, k) = B(x, k) + B(h, y)$.
En efecto, de la bilinealidad de B tenemos $B(x + h, y + k) = B(x, y) + B(x, k) + B(h, y) + B(h, k) = B(x, y) + \sum_{j=1}^{n} (x_j k_j + h_j y_j)$. Tomando $r(h, k) = B(h, k)$ debemos probar que
\[
\lim_{(h,k)\to(0,0)} \frac{|B(h, k)|}{|(h, k)|} = 0.
\]
Como B es bilineal, existe $c \geq 0$ tal que $|B(u, v)| \leq c |u||v|$ para todo $(u, v) \in \mathbb{R}^n \times \mathbb{R}^m$. Para mostrar la existencia de tal constante basta tomar $c = \sup \{|B(u, v)| : |u| \leq 1, |v| \leq 1 \}$. Ahora en $\mathbb{R}^n \times \mathbb{R}^m \equiv \mathbb{R}^{n+m}$ usamos la norma $|(u, v)| = \max \{|u|, |v| \}$ y tenemos
\[
\frac{|B(h, k)|}{|(h, k)|} \leq c \frac{|h||k|}{|(h, k)|} = \frac{c|h||k|}{\max\{|h|, |k|\}} = c \min\{|h|, |k|\},
\]
por lo tanto
\[
\lim_{(h,k)\to(0,0)} \frac{|B(h, k)|}{|(h, k)|} = 0.
\]

Casos Particulares

(a) Producto en \mathbb{R}. Sea $p : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, el producto usual $p(x, y) = x \cdot y$. Claramente p es bilineal y por lo tanto diferenciable en cada $(x, y) \in \mathbb{R} \times \mathbb{R}$ con $Dp(x, y)(h, k) = p(x, k) + p(h, y) = x_k + h_y$.

(b) Producto interno usual en \mathbb{R}^n. Sea $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, el producto interno usual $\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j$ es bilineal, por lo tanto diferenciable en cada $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n \equiv \mathbb{R}^{n^2}$ con $D\langle x, y \rangle(h, k) = \langle x, k \rangle + \langle h, y \rangle = \sum_{j=1}^{n} (x_j k_j + h_j y_j)$.

En los siguientes ejemplos usamos la identificación natural que existe entre $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ y \mathbb{R}^{mn}.
(c) Composición de aplicaciones lineales. Sea $\mu : \mathcal{L}(\mathbb{R}^m, \mathbb{R}^p) \times \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ la aplicación dada por $\mu(T, L) = T \circ L$, es fácil verificar que μ es bilineal y por lo tanto diferenciable en cada $(T, L) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^p) \times \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ con $D\mu(T, L)(H, K) = \mu(T, K) + \mu(H, L) = T \circ K + H \circ L$.

(d) Evaluación de aplicaciones lineales. Sea eval : $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \times \mathbb{R}^n \to \mathbb{R}^m$ la aplicación evaluación, dada por eval(L, x) = $L(x)$. Claramente eval es bilineal, por lo tanto diferenciable en cada $(L, x) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \times \mathbb{R}^n$, y tenemos que $D\text{eval}(L, x)(H, k) = \text{eval}(L, k) + \text{eval}(H, x) = L(k) + H(x)$.

4. Inversión de matrices. Denotemos por $\text{GL}(\mathbb{R}^n) = \{ A \in \mathbb{M}(n \times n, \mathbb{R}) : \det(A) \neq 0 \}$ el grupo multiplicativo de las matrices invertibles. Mediante la identificación natural entre $\mathbb{M}(n \times n, \mathbb{R})$ y \mathbb{R}^{n^2} tenemos una topología natural en $\mathbb{M}(n \times n, \mathbb{R})$, con esta topología $\text{GL}(\mathbb{R}^n)$ es un conjunto abierto, pues la aplicación determinante det : $\mathbb{M}(n \times n, \mathbb{R}) \to \mathbb{R}$ es continua y $\text{GL}(\mathbb{R}^n) = \det^{-1}(\mathbb{R} - \{0\})$.

Sea inv : $\text{GL}(\mathbb{R}^n) \to \mathbb{M}(n \times n, \mathbb{R})$ la aplicación definida por inv(X) = X^{-1}. Afirmamos que inv es diferenciable en cada $X \in \text{GL}(\mathbb{R}^n)$ y que $D\text{inv}(X)H = -X^{-1}HX^{-1}$.

En efecto, para mostrar que la fórmula propuesta anteriormente para la derivada de inv no es artificial, veamos primero el caso $n = 1$. Tenemos $\text{GL}(\mathbb{R}) = \mathbb{R} - \{0\}$, $\mathbb{M}(1 \times 1, \mathbb{R}) = \mathbb{R}$ e inv : $\mathbb{R} - \{0\} \to \mathbb{R}$ es dada por inv(x) = $x^{-1} = 1/x$, en este caso $D\text{inv}(x)h = -h/x^2 = -x^{-1}hx^{-1}$, pues inv($x$) = $1/x^2$.

Para $n > 1$, escribamos inv($X + H$) = inv(X) + $D\text{inv}(X)H + r(H)$, es decir, $(X + H)^{-1} = X^{-1} - X^{-1}HX^{-1} + r(H)$, mul-
tiplicando esta última igualdad por \((X + H)\), obtenemos \(I = X^{-1}(X + H) - X^{-1}HX^{-1}(X + H) + r(H) \cdot (X + H)\), donde \(I\) denota la matriz identidad. Desarrollando el segundo miembro de esta igualdad, tenemos \(I = I - X^{-1}HX^{-1}H + r(H) \cdot (X + H)\), luego \(r(H) \cdot (X + H) = X^{-1}HX^{-1}H = (X^{-1}H)^2\), de donde \(r(H) = (X^{-1}H)^2 \cdot (X + H)^{-1}\), por lo tanto \(|r(H)| \leq |X^{-1}|^2 \cdot |H|^2 \cdot |X + H|^{-1}\). Dividiendo esta última desigualdad por \(|H|\), nos queda \(\frac{|r(H)|}{|H|} \leq |X^{-1}|^2 \cdot |H| \cdot |X + H|^{-1}\).

Ahora es claro que el cuociente \(\frac{|r(H)|}{|H|}\) tiende a 0 cuando \(H \to 0\), lo cual termina la prueba.

5. Sea \(f : M(n \times n, \mathbb{R}) \to M(n \times n, \mathbb{R})\) la aplicación definida por \(f(X) = X^2\). Entonces \(f\) es diferenciable y \(Df(X)H = XH + HX\), para cada \(H \in M(n \times n, \mathbb{R})\).

En efecto, \(f(X + H) - f(X) = (X + H)^2 - X^2 = X^2 + XH + HX + H^2 - X^2 = XH +HX + H^2\), es decir, \(f(X + H) = f(X) + Df(X)H + r(H)\), donde \(Df(X)H = XH +HX\) y \(r(H) = H^2\), es claro que \(\lim_{H \to 0} \frac{|r(H)|}{|H|} = 0\).

Sea \(U \subset \mathbb{R}^n\) y sea \(f : U \to \mathbb{R}^m\) una aplicación. Entonces \(f\) determina y es determinada por \(m\) aplicaciones \(f_i : U \to \mathbb{R}\ (i = 1, 2, \ldots, m)\) llamadas funciones coordenadas de \(f\). Las aplicaciones \(f_i\) son dadas por la relación \(f(x) = (f_1(x), \ldots, f_m(x))\). Observemos que \(f_i = \pi_i \circ f\), donde \(\pi_i : \mathbb{R}^m \to \mathbb{R}\) es la aplicación lineal dada por \(\pi_i(x_1, x_2, \ldots, x_m) = x_i\). La aplicación \(\pi_i\) es llamada la proyección en la \(i\)-ésima coordenada.

Proposición 6.2 Sea \(U \subset \mathbb{R}^n\) un conjunto abierto, y sea \(f : U \to \mathbb{R}^m\). Entonces \(f\) es diferenciable en un punto \(x \in U\) si, y sólo si, cada
La aplicación f_i ($i = 1, 2, \ldots, m$) es diferenciable en x. Además,

$$Df(x)h = (Df_1(x)h, \ldots, Df_m(x)h).$$

Demostración. La igualdad $f(x + h) = f(x) + Df(x)h + r(h)$ es equivalente a las m igualdades $f_i(x + h) = f_i(x) + Df_i(x)h + r_i(h)$, para $i = 1, \ldots, m$, donde $Df(x)h = (Df_1(x)h, \ldots, Df_m(x)h)$ y $r(h) = (r_1(h), \ldots, r_m(h))$. Además, es claro que $\lim_{h \to 0} r(h)/|h| = 0$ si, y sólo si, $\lim_{h \to 0} r_i(h)/|h| = 0$ para todo $i = 1, 2, \ldots, m$. Luego f es diferenciable en $x \in U$ si, y sólo si, cada función coordenada f_i para cada $i = 1, \ldots, m$ lo es, y recíprocamente. La fórmula para la derivada es inmediata.

En los ejemplos que hemos estudiado, propusimos una fórmula para la derivada de la aplicación en cuestión, esto sin mayores explicaciones, consecuentemente el lector puede protestar, y con razón, por la forma en que se suponía el candidato a derivada y luego se comprobaba que era el correcto. Además, surge la pregunta natural de ¿cómo encontrar tal candidato? Los cálculos que hemos realizado para obtener el candidato a derivada están basados en la observación siguiente,

Observación. Sea $U \subset \mathbb{R}^n$ un conjunto abierto y sea $f : U \to \mathbb{R}^m$ una aplicación diferenciable en un punto $x \in U$, entonces para cada $v \in \mathbb{R}^n$ con $v \neq 0$ y cada $t \in \mathbb{R}$ con $t \neq 0$, se tiene

$$Df(x)v = Df(x)\left(\frac{tv}{t}\right) = \frac{1}{t}Df(x)(tv) = \frac{f(x + tv) - f(x)}{t} \pm \frac{r(tv)}{|tv|} |v| \quad (6.10)$$

luego,

$$Df(x)v = \lim_{t \to 0} \frac{f(x + tv) - f(x)}{t}, \quad (6.11)$$

por lo tanto si $\lim_{t \to 0} \frac{f(x + tv) - f(x)}{t}$ existe, este debe ser el candidato natural a derivada de la aplicación f en el punto x tomando $Df(x)v$ como el límite anterior.
Es importante resaltar que la existencia del límite en (6.11), aún cuando nos da una forma de calcular el candidato a derivada, no nos garantiza que \(f \) sea diferenciable en el punto \(x \). Por lo tanto, una vez encontrado el candidato a derivada debemos verificar que este satisface (6.7) o equivalentemente (6.8).

Ejemplos

1. Sea \(f : \mathbb{M}(n \times n, \mathbb{R}) \to \mathbb{M}(n \times n, \mathbb{R}) \) dada por \(f(X) = X^2 \).

Tenemos \(f(X + tH) - f(X) = X^2 + tXH + tHX + t^2H^2 - X^2 = tXH + tHX + t^2H^2 \)

\[
\lim_{t \to 0} \frac{f(X + tH) - f(X)}{t} = \lim_{t \to 0} \frac{tXH + tHX + t^2H^2}{t}
\]

\[
= \lim_{t \to 0} \frac{tXH + tHX + t^2H^2}{t}
\]

\[
= XH + HX,
\]

y ya verificamos en un ejemplo anterior que \(Df(X)H = XH + HX \).

2. Sea \(f : \mathbb{M}(n \times n, \mathbb{R}) \to \mathbb{M}(n \times n, \mathbb{R}) \) dada por \(f(X) = X^T \), donde \(X^T \) matriz denota la matriz traspuesta de la matriz \(X \). Tenemos

\[
\lim_{t \to 0} \frac{f(X + tH) - f(X)}{t} = \lim_{t \to 0} \frac{(X + tH)^T - X^T}{t}
\]

\[
= \lim_{t \to 0} \frac{tH^T}{t} = H^T.
\]

Ahora es fácil verificar que \(f \) es diferenciable y que \(Df(X)H = H^T \). Note que \(f(X) = X^T \) es una aplicación lineal.
3. Sea \(f : \mathbb{M}(n \times n, \mathbb{R}) \to \mathbb{M}(n \times n, \mathbb{R}) \) dada por \(f(X) = XX^T \).

Tenemos,
\[
\begin{align*}
 f(X + tH) - f(X) &= (X + tH)(X + tH)^T - XX^T \\
 &= XX^T + tXH^T + tHX^T + t^2HH^T - XX^T = tXH^T + tHX^T + t^2HH^T,
\end{align*}
\]

luego
\[
\lim_{t \to 0} \frac{f(X + tH) - f(X)}{t} = \lim_{t \to 0} \frac{tXH^T + tHX^T + t^2HH^T}{t} = XH^T + HX^T
\]

es fácil verificar que \(Df(X)H = XH^T + HX^T \) satisface la definición de derivada, por lo tanto \(f \) es diferenciable.

Como ejercicio, el lector puede verificar usando (6.11) que la expresión de la derivada en cada uno de los restantes ejemplos anteriores viene dada por este límite.

Sean \(U \subset \mathbb{R}^n \) un conjuntoabierto y \(f : U \to \mathbb{R}^m \). Dados \(x \in U \) y \(v \in \mathbb{R}^n \), con \(v \neq 0 \), el límite
\[
\lim_{t \to 0} \frac{f(x + tv) - f(x)}{t} \tag{6.12}
\]
cuando existe, es llamado **derivada direccional** de \(f \) en el punto \(x \) en la dirección \(v \) y lo denotamos por \(D_v f(x) \) o por \(\frac{\partial f}{\partial v}(x) \).

El caso particular más importante es cuando consideramos las direcciones dadas por los vectores unitarios \(e_1, e_2, \ldots, e_n \) de la base canónica de \(\mathbb{R}^n \). En este caso, la derivada direccional de \(f \) en \(x \in U \) en la dirección \(e_i \) es denotada por \(\frac{\partial f}{\partial x_i}(x) \), y es llamada **derivada parcial** de \(f \) en \(x \) respecto a la variable \(x_i \), es decir,
\[
\frac{\partial f}{\partial x_i}(x) = \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t}. \tag{6.13}
\]

Las derivadas parciales de orden superior son definidas de modo simple
Sergio Plaza

\[\frac{\partial^2 f}{\partial x_j \partial x_i}(x) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}(x) \right) \]

\[\frac{\partial^3 f}{\partial x_k \partial x_j \partial x_i}(x) = \frac{\partial}{\partial x_k} \left(\frac{\partial^2 f}{\partial x_j \partial x_i}(x) \right) \]

cuando estas existen

Ejemplos

1. Sea \(f : \mathbb{R}^3 \to \mathbb{R} \) definida por \(f(x, y, z) = x^2 + y^2 + z^4 \). Calculemos la derivada direccional de \(f \) en el punto \((1, 1, 1) \) y en la dirección \(v = (\sqrt{2}/2, \sqrt{2}/2, 0) \). Tenemos

\[
\frac{\partial f}{\partial v}(1, 1, 1) = \lim_{t \to 0} \frac{f((1, 1, 1) + t(\sqrt{2}/2, \sqrt{2}/2, 0)) - f(1, 1, 1)}{t}
\]

\[
= \lim_{t \to 0} \frac{(1 + t\sqrt{2}/2)^2 + (1 + t\sqrt{2}/2)^2 + 1 - 3}{t}
\]

\[
= \lim_{t \to 0} \frac{2t\sqrt{2} + t^2}{t} = 2\sqrt{2}.
\]

2. Sea \(f : \mathbb{R}^2 \to \mathbb{R} \) definida por

\[
f(x, y) = \begin{cases}
x y \quad \text{si} \ (x, y) \neq (0, 0) \\
\frac{x y}{x^2 + y^2} \quad \text{si} \ (x, y) = (0, 0)
\end{cases}
\]

Evidentemente, \(f \) no es continua en el origen, pero \(\frac{\partial f}{\partial x}(0, 0) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} = 0 \) y \(\frac{\partial f}{\partial y}(0, 0) = \lim_{k \to 0} \frac{f(0, k) - f(0, 0)}{k} = 0 \), es decir, ambas derivadas parciales existen aún cuando \(Df(0, 0) \) no existe (¿porqué?)
3. Sea \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) definida por

\[
 f(x, y) = \begin{cases}
 xy(x^2 - y^2) & \text{si } (x, y) \neq (0, 0) \\
 0 & \text{si } (x, y) = (0, 0).
\end{cases}
\]

Para \((x, y) \neq (0, 0)\), tenemos

\[
 \frac{\partial f}{\partial x}(x, y) = y \left(\frac{x^2 - y^2}{x^2 + y^2} + \frac{4x^2y^2}{(x^2 + y^2)^2} \right),
\]

\[
 \frac{\partial f}{\partial y}(x, y) = x \left(\frac{x^2 - y^2}{x^2 + y^2} - \frac{4x^2y^2}{(x^2 + y^2)^2} \right).
\]

En particular, \(\frac{\partial f}{\partial x}(0, y) = -y \) y \(\frac{\partial f}{\partial y}(x, 0) = x \). Además,

\[
 \frac{\partial f}{\partial x}(0, 0) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} = 0,
\]

\[
 \frac{\partial f}{\partial y}(0, 0) = \lim_{k \to 0} \frac{f(0, k) - f(0, 0)}{k} = 0,
\]

y

\[
 \frac{\partial^2 f}{\partial y \partial x}(0, 0) = \lim_{k \to 0} \frac{\frac{\partial f}{\partial x}(0, k) - \frac{\partial f}{\partial x}(0, 0)}{k} = \lim_{k \to 0} \frac{-k}{k} = -1,
\]

\[
 \frac{\partial^2 f}{\partial x \partial y}(0, 0) = \lim_{h \to 0} \frac{\frac{\partial f}{\partial y}(h, 0) - \frac{\partial f}{\partial y}(0, 0)}{h} = \lim_{h \to 0} \frac{h}{h} = 1.
\]

Mostraremos más adelante que en general, bajo hipótesis simple, se tiene la igualdad de las segundas derivadas parciales mixtas.

4. Un ejemplo que muestra que pueden existir las derivadas direccionales en todas las direcciones, sin que por ellos la aplicación sea
diferenciable en un punto es dado por la siguiente aplicación. Sea
\(f : \mathbb{R}^2 \to \mathbb{R} \) definida por

\[
f(x, y) = \begin{cases}
\frac{x^2 y}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0).
\end{cases}
\]

No es difícil ver que para cada \(v \in \mathbb{R}^2 \), con \(v \neq 0 \), y cada \((x, y) \in \mathbb{R}^2 \) la derivada direccional de \(f \) en \((x, y) \) en la dirección \(v \) existe, pero \(f \) no es diferenciable en \((0,0) \).

5. Sea \(f : \mathbb{R}^2 \to \mathbb{R} \) definida por

\[
f(x, y) = \begin{cases}
\frac{x^3 - y^3}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0).
\end{cases}
\]

Tenemos que \(f \) es continua en el origen y existen ambas derivadas parciales en \((0,0) \), pero no es diferenciable en ese punto.

En efecto, usando coordenadas polares \(x = r \cos(\theta) \) e \(y = r \sin(\theta) \), tenemos

\[
\left| \frac{x^3 - y^3}{x^2 + y^2} \right| = \left| r (\cos^3(\theta) - \sin^3(\theta)) \right| \leq 2r = 2 \sqrt{x^2 + y^2} < \varepsilon
\]

si \(x^2 \leq \frac{\varepsilon}{8} \) y \(y^2 \leq \frac{\varepsilon}{8} \), escribiendo esto de otra forma, tenemos

\[
|x| \leq \frac{\varepsilon}{2 \sqrt{2}} \quad \text{y} \quad |y| \leq \frac{\varepsilon}{2 \sqrt{2}}.
\]

Luego, \(|\frac{x^3 - y^3}{x^2 + y^2} - 0| \leq \varepsilon \) cuando \(|x| \leq \frac{\varepsilon}{2 \sqrt{2}} \) y \(|y| \leq \frac{\varepsilon}{2 \sqrt{2}} \), donde evidentemente elegimos \(\delta = \frac{\varepsilon}{2 \sqrt{2}} \), por lo tanto \(f \) es continua en el origen. Ahora,

\[
\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{h - 0}{h} = 1
\]

\[
\frac{\partial f}{\partial y}(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \frac{-k}{k} = -1
\]
luego la función posee derivadas parciales en \((0,0)\).

Ahora, si \(f\) fuese diferenciable en \((0,0)\) deberíamos tener que

\[
Df(0,0)(h,k) = \frac{\partial f}{\partial x}(0,0)h + \frac{\partial f}{\partial y}(0,0)k + h\phi(h,k) + k\psi(h,k),
\]

donde \(\lim_{(h,k)\to(0,0)} \phi(h,k) = \lim_{(h,k)\to(0,0)} \psi(h,k) = 0\). Poniendo \(h = \rho \cos(\theta)\) y \(k = \rho \sen(\theta)\) y dividiendo por \(\rho\), obtenemos

\[
\cos^3(\theta) - \sen^3(\theta) = \cos(\theta) - \sen(\theta) + \phi(h,k) \cos(\theta) + \psi(h,k) \sen(\theta).
\]

Para \(\theta = \arctan(h/k)\) arbitrario, se tiene \(\rho \to 0\) implica que \((h,k) \to (0,0)\), luego tomando límite, obtenemos la identidad trigonométrica \(\cos^3(\theta) - \sen^3(\theta) = \cos(\theta) - \sen(\theta)\), de donde \(\cos(\theta) \sen(\theta)(\cos(\theta) - \sen(\theta)) = 0\), lo cual es imposible para \(\theta\) arbitrario. Por lo tanto \(f\) no es diferenciable en el origen.

6. La función \(f : \mathbb{R}^2 \to \mathbb{R}\) definida por

\[
f(x,y) = \begin{cases}
xy/\sqrt{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\
0 & \text{si } (x,y) = (0,0).
\end{cases}
\]

es continua y posee derivadas parciales, pero no es diferenciable en el origen.

En efecto, es fácil ver que \(f\) es continua en todo su dominio, y un cálculo directo aplicando la definición de derivada parcial, muestra que \(\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0\). Como en el ejemplo anterior, si \(f\), fuese diferenciable en \((0,0)\) deberíamos tener que

\[
Df(0,0)(h,k) = \frac{\partial f}{\partial x}(0,0)h + \frac{\partial f}{\partial y}(0,0)k + h\phi(h,k) + k\psi(h,k),
\]

donde

\[
\lim_{(h,k)\to(0,0)} \phi(h,k) = \lim_{(h,k)\to(0,0)} \psi(h,k) = 0,
\]

en este caso, desarrollando lo anterior obtenemos que \(\frac{hk}{\sqrt{h^2+k^2}} = h\phi(h,k) + k\psi(h,k)\), y usando coordenadas polares \(h = r \cos(\theta)\) y \(k = r \sen(\theta)\), obtenemos \(\cos(\theta) \sen(\theta) = \phi \cos(\theta) + \psi \sen(\theta)\). Para \(\theta\) arbitrario, se
tiene $r \to 0$ implica que $(h, k) \to (0,0)$. Luego, haciendo $r \to 0$ nos queda $\cos(\theta)\sen(\theta) = 0$, lo cual es imposible para θ arbitrario. Por lo tanto f no es diferenciable en el origen.

7. Sea $f : \mathbb{R}^2 \to \mathbb{R}$ la función definida por

$$f(x, y) = \begin{cases}
 x^2 \sen(1/x) + y^2 \sen(1/y) & \text{si } xy \neq 0 \\
 x^2 \sen(1/x) & \text{si } y = 0, \ x \neq 0 \\
 y^2 \sen(1/y) & \text{si } x = 0, \ y \neq 0 \\
 0 & \text{si } x = y = 0,
\end{cases}$$

Se tiene que

$$\frac{\partial f}{\partial x}(x, y) = \begin{cases}
 2x \sen(1/x) - \cos(1/x) & \text{si } x \neq 0 \\
 0 & \text{si } x = 0
\end{cases}$$

y

$$\frac{\partial f}{\partial y}(x, y) = \begin{cases}
 2y \sen(1/y) - \cos(1/y) & \text{si } y \neq 0 \\
 0 & \text{si } y = 0
\end{cases}$$

ambas son discontinuas en el origen, esto es, ambas derivadas parciales existen en el origen, pero son discontinuas en ese punto.

Ahora, si f fuese diferenciable en el origen deberíamos tener que

$$f(h, k) - f(0, 0) = h^2 \sen(1/h) + k^2 \sen(1/k)$$

$$= 0h + 0k + h(\sen(1/h) + k(\sen(1/k))).$$

Ahora, ambos límites $\lim_{h \to 0} h \sen(1/h)$ y $\lim_{k \to 0} k \sen(1/k)$ existen y son iguales a 0, por lo tanto f, es diferenciable en el origen.
En los ejemplos anteriores muestran que la existencia de las derivadas parciales o de las derivadas direccionales en un punto no garantiza que f sea diferenciable en ese punto. Por otra parte, es claro que si f es diferenciable en $x \in U$, entonces existen las derivadas direccionales de f en todas las direcciones y vienen dadas por

$$\frac{\partial f}{\partial v}(x) = Df(x)v,$$

donde $v \in \mathbb{R}^n$, con $v \neq 0$.

Ejemplos

1. Sea $f(x, y) = e^{-x} \sen(y)$. Tenemos

$$\frac{\partial f}{\partial x}(x, y) = -e^{-x} \sen(y), \quad \frac{\partial f}{\partial y}(x, y) = e^{-x} \cos(y),$$

de donde,

$$\frac{\partial^2 f}{\partial y \partial x}(x, y) = -e^{-x} \cos(y) = \frac{\partial^2 f}{\partial x \partial y}(x, y).$$

2. Sea $f(x, y, z, w) = e^{2z+w^2} \log(x^2 + y^2)$, donde $(x, y) \neq (0, 0)$. Tenemos,

$$\frac{\partial f}{\partial x}(x, y, z, w) = e^{2z+w^2} \frac{2x}{x^2 + y^2},$$
$$\frac{\partial f}{\partial y}(x, y, z, w) = e^{2z+w^2} \frac{2y}{x^2 + y^2},$$
$$\frac{\partial f}{\partial z}(x, y, z, w) = 2ze^{2z+w^2} \log(x^2 + y^2),$$
$$\frac{\partial f}{\partial w}(x, y, z, w) = 2we^{2z+w^2} \log(x^2 + y^2).$$
Derivando nuevamente, tenemos,

\[
\frac{\partial^2 f}{\partial y \partial x}(x, y, z, w) = e^{z^2+w^2} - 4xy \frac{-4xy}{(x^2+y^2)^2} = \frac{\partial^2 f}{\partial x \partial y}(x, y, z, w)
\]

\[
\frac{\partial^2 f}{\partial z \partial x}(x, y, z, w) = 2ze^{z^2+w^2} \frac{2x}{x^2+y^2} = \frac{\partial^2 f}{\partial x \partial z}(x, y, z, w)
\]

\[\vdots\]

6.1.1 Matriz Jacobiana

Sea \(U \subset \mathbb{R}^n \) un conjunto abierto y sea \(f : U \to \mathbb{R}^m \) una aplicación diferenciable en \(x \in U \). Tenemos que \(Df(x) : \mathbb{R}^n \to \mathbb{R}^m \) es una aplicación lineal, por lo tanto ella tiene una representación matricial.

Ahora encontraremos la representación matricial de \(Df(x) \) relativa a las bases canónicas de \(\mathbb{R}^n \) y de \(\mathbb{R}^m \). Denotemos por \(\{e_1, \ldots, e_n\} \) la base canónica de \(\mathbb{R}^n \). Como \(f \) es diferenciable en \(x \), tenemos que \(Df(x)e_i = \frac{\partial f(x)}{\partial x_i} \). Escribiendo \(f \) en términos de sus aplicaciones coordenadas, es decir, \(f = (f_1, f_2, \ldots, f_m) \), tenemos

\[
\frac{\partial f}{\partial x_i}(x) = Df(x)e_i = (Df_1(x)e_i, Df_2(x)e_i, \ldots, Df_m(x)e_i)
\]

\[
= \left(\frac{\partial f_1}{\partial x_i}(x), \frac{\partial f_2}{\partial x_i}(x), \ldots, \frac{\partial f_m}{\partial x_i}(x) \right),
\]

esta expresión es relativa a las bases canónicas de \(\mathbb{R}^n \) y \(\mathbb{R}^m \), respectivamente. Por lo tanto,

\[
\frac{\partial f}{\partial x_i}(x) = Df(x)e_i = \sum_{j=1}^{m} \frac{\partial f_j}{\partial x_i}(x)e_j
\]

y la expresión matricial de la transformación lineal \(Df(x) : \mathbb{R}^n \to \mathbb{R}^m \), llamada matriz jacobiana de \(f \) en \(x \) y denotada por \(Jf(x) \), tiene por
elemento \((j, i)\) el \(j\)-ésimo elemento del vector \(\frac{\partial f_j}{\partial x_i}(x)\), esto es,

\[
Jf(x) = \begin{pmatrix}
\frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\
\frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \cdots & \frac{\partial f_2}{\partial x_n}(x) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x)
\end{pmatrix}_{m \times n}
\]

(6.14)

Como ya observamos, la existencia de \(Jf(x)\), y por lo tanto de las derivadas parciales, no garantiza que \(f\) sea diferenciable en un punto \(x\) de \(U\).

Ejemplos.

1. Sea \(U = \{(r, \theta) \in \mathbb{R}^2 : r > 0, \ \theta \in \mathbb{R}\}\). Es claro que \(U\) es un conjunto abierto. Definamos \(f : U \to \mathbb{R}^2\) por \(f(r, \theta) = (f_1(r, \theta), f_2(r, \theta) = (r \cos(\theta), r \sin(\theta))\). Tenemos que

\[
Jf(r, \theta) = \begin{pmatrix}
\cos(\theta) & -r \sin(\theta) \\
\sin(\theta) & r \cos(\theta)
\end{pmatrix}
\]

2. Sea \(U = \{(r, \theta, \phi) \in \mathbb{R}^3 : r > 0, \ \theta, \phi \in \mathbb{R}\}\). Es claro que \(U\) es un conjunto abierto. Sea \(f : U \to \mathbb{R}^3\) dada por \(f(r, \theta, \phi) = \ldots\)

\[(r \cos(\theta) \sin(\phi), r \sin(\theta) \sin(\phi), r \cos(\phi))\]. Tenemos

\[
Jf(r, \theta, \phi) = \begin{pmatrix}
\cos(\theta) \sin(\phi) & -r \sin(\theta) \sin(\phi) & r \cos(\theta) \cos(\phi) \\
\sin(\theta) \sin(\phi) & r \cos(\theta) \sin(\phi) & r \sin(\theta) \cos(\phi) \\
\cos(\phi) & 0 & -r \sin(\phi)
\end{pmatrix}.
\]

6.2 Casos Especiales

1. **Caminos diferenciables.** Estas son aplicaciones \(f : J \rightarrow \mathbb{R}^m\), donde \(J \subset \mathbb{R}\) es un intervalos abierto.

2. **Funciones diferenciables.** Estas son aplicaciones \(f : U \subset \mathbb{R}^n \rightarrow \mathbb{R}\), donde \(U\) es un conjunto abierto.

Ahora estudiaremos estos dos casos particulares en forma más detallada.

6.2.1 Caminos Diferenciables

Un camino es una aplicación \(f : J \subset \mathbb{R} \rightarrow \mathbb{R}^m\), donde \(J \subset \mathbb{R}\) es un intervalo abierto.

El vector velocidad de un camino \(f\) en un punto \(x \in J\) se define como

\[
v_x = \frac{df}{dt}(x) = \lim_{t \to 0} \frac{f(x + t) - f(x)}{t}, \quad (6.15)
\]
cuando el límite existe.

Recuerdemos ahora que \(\mathcal{L}(\mathbb{R}, \mathbb{R}^m)\) es canónicamente isomorfo a \(\mathbb{R}^m\).

En efecto, definamos \(\Gamma : \mathcal{L}(\mathbb{R}, \mathbb{R}^m) \rightarrow \mathbb{R}^m\) por \(\Gamma(L) = v_L\), donde el vector \(v_L \in \mathbb{R}^m\) es dado por \(v_L = L(1)\). Es fácil ver \(\Gamma\) es un isomorfismo.
Dada una transformación lineal $L \in \mathcal{L}(\mathbb{R}, \mathbb{R}^m)$ y dado $t \in \mathbb{R}$, tenemos que $L(t) = L(t \cdot 1) = t \cdot L(1) = t \cdot v_L$, en otras palabras mediante el isomorfismo Γ el valor de L en el vector $t \in \mathbb{R}$ se transforma en el producto escalar del vector v_L por t.

Ahora, sea $f : J \subset \mathbb{R} \rightarrow \mathbb{R}^m$ un camino. Tenemos que
$$f(x + t) = f(x) + Df(x)t + r(t)$$
es equivalente a
$$f(x + t) = f(x) + tDf(x)1 + r(t)$$
donde $T = Df(x)$, de aquí
$$\frac{f(x + t) - f(x)}{t} - v_T = \frac{r(t)}{t}, \quad (6.16)$$
de esta última igualdad, deducimos que f es diferenciable en un punto $x \in J$, si y sólo si, f tiene un vector velocidad v_x en ese punto. Además, mediante el isomorfismo Γ anterior la aplicación lineal $Df(x)$ se transforma en el vector velocidad $v_x = \frac{df(x)}{dt} = Df(x)1$. Ahora, escribiendo f en términos de sus funciones coordenadas, $f = (f_1, f_2, \ldots, f_m)$ donde $f_i : J \rightarrow \mathbb{R} \quad (i = 1, \ldots, m)$ tenemos
$$\frac{df}{dt}(x) = \left(\frac{df_1}{dt}(x), \frac{df_2}{dt}(x), \ldots, \frac{df_m}{dt}(x)\right). \quad (6.17)$$
Por lo tanto, para calcular la derivada de un camino diferenciable $f : J \subset \mathbb{R} \rightarrow \mathbb{R}^m$ en un punto $x \in J$ basta calcular las derivadas de cada aplicación coordenada $f_i : J \rightarrow \mathbb{R}$ en ese punto, y tenemos
$$Df(x)t = t \cdot Df(x)1 = t \cdot \frac{df}{dt}(x)$$
$$= t \left(\frac{df_1}{dt}(x), \frac{df_2}{dt}(x), \ldots, \frac{df_m}{dt}(x)\right). \quad (6.18)$$

Observación. El vector $f(x) + \frac{df}{dt}(x)$, trasladado del vector velocidad $\frac{df}{dt}(x)$ al punto $f(x)$, es un vector tangente a la gráfica de f en el punto
\(f(x) \). La recta \(\ell \), generada por \(\frac{df}{dt}(x) \), la cual viene dada por

\[
\ell = \left\{ \lambda \cdot \frac{df}{dt}(x) : \lambda \in \mathbb{R} \right\} \subset \mathbb{R}^m,
\]
es un subespacio vectorial de \(\mathbb{R}^m \) y su trasladada, \(f(x) + \ell \), es una recta tangente al gráfico de \(f \) en el punto \(f(x) \). En general, a la recta \(\ell \) la llamaremos la recta tangente a \(f \) en el punto \(f(x) \).

6.3 Funciones Diferenciables

Sean \(U \subset \mathbb{R}^n \) un conjunto abierto y \(f : U \to \mathbb{R} \) una aplicación diferenciable en \(x \in U \), en este caso tenemos que \(Df(x) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}) = (\mathbb{R}^n)^* \), dual algebraico de \(\mathbb{R}^n \) (en este caso también es el dual topológico, pues la dimensión de los espacios en cuestión es finita.)

Se acostumbra a denotar \(Df(x) \) por \(df(x) \) y es llamada \textit{diferencial} de \(f \) en el punto \(x \). Aquí también seguiremos esta tradición.

Como \(m = 1 \), la matriz jacobiana de \(f \) en \(x \) respecto a las bases canónicas de \(\mathbb{R}^n \) y de \(\mathbb{R} \), es una matriz de una fila y \(n \) columnas

\[
Jf(x) = \begin{pmatrix}
\frac{\partial f}{\partial x_1}(x) & \frac{\partial f}{\partial x_2}(x) & \cdots & \frac{\partial f}{\partial x_n}(x)
\end{pmatrix}_{1 \times n}
\]
la cual puede se identifica naturalmente con el vector
\[\left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \ldots, \frac{\partial f}{\partial x_n}(x) \right)\]
de \(\mathbb{R}^n\) mediante el isomorfismo canónico \(\Theta : \mathbb{M}(1 \times n) \rightarrow \mathbb{R}^n\).

Denotemos por \(\{e^1, e^2, \ldots, e^n\}\) la base de \((\mathbb{R}^n)^*\), dual de la base canónica \(\{e_1, e_2, \ldots, e_n\}\) de \(\mathbb{R}^n\), las funciones lineales \(e^i : \mathbb{R}^n \rightarrow \mathbb{R}\) son dadas por \(e^i(e_j) = \delta_{ij}\), donde \(\delta_{ij}\) es el delta de Kronecker,
\[
\delta_{ij} = \begin{cases}
1 & \text{si } i = j \\
0 & \text{si } i \neq j.
\end{cases}
\]

En esta base de \((\mathbb{R}^n)^*\) las coordenadas de \(df(x)\) son los números \(\frac{\partial f(x)}{\partial x_i}\), y tenemos
\[
df(x) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x) e^i. \tag{6.19}
\]

Las aplicaciones lineales \(e^i : \mathbb{R}^n \rightarrow \mathbb{R}\), usualmente son denotadas por \(dx_i\), pues \(e^i(v_1, v_2, \ldots, v_n) = v_i = x_i(v_1, v_2, \ldots, v_n)\), donde \(x_i : \mathbb{R}^n \rightarrow \mathbb{R}\) son las funciones que asignan a cada vector \(v \in \mathbb{R}^n\) su \(i\)-ésima coordenada. Es claro que \(dx_i(v) = v_i\) y podemos escribir \(df(x)\) como
\[
df(x) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x) dx_i \tag{6.20}
\]
así,
\[
df(x)v = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x) dx_i(v) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x) v_i. \tag{6.21}
\]
Ahora, como \(df(x) : \mathbb{R}^n \rightarrow \mathbb{R}\) es una transformación lineal, existe un único vector \(v_x \in \mathbb{R}^n\) tal que
\[
df(x)h = \langle v_x, h \rangle, \tag{6.22}
\]
para todo \(h \in \mathbb{R}^n \), el vector \(v \) es llamado vector gradiente de la función \(f \) en el punto \(x \) y lo denotamos por \(\text{grad} f(x) \) o por \(\nabla f(x) \). Podemos reescribir lo anterior como

\[
df(x) h = \langle \text{grad} f(x), h \rangle ,
\]

para todo \(h \in \mathbb{R}^n \). El problema que surge aquí, es ¿cómo calcular las coordenadas del vector \(\text{grad} f(x) \), por lo menos, relativas a la base canónica de \(\mathbb{R}^n \)?

Para esto, observemos que

\[
\frac{\partial f}{\partial x_i}(x) = df(x) e_i = \langle \text{grad} f(x), e_i \rangle ,
\]

por lo tanto,

\[
\text{grad} f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \ldots, \frac{\partial f}{\partial x_n}(x) \right) .
\]

Podemos también identificar el vector \(\text{grad} f(x) \) con la matriz jacobiana \(Jf(x) \) por el isomorfismo \(\Theta \) anterior.

Nota. Como ejercicio el lector puede encontrar las coordenadas del vector \(\text{grad} f(x) \) relativo a una base arbitraria de \(\mathbb{R}^n \).

Ejemplos

1. Sea \(f : \mathbb{R}^3 \to \mathbb{R} \) dada por \(f(x, y, z) = \cos(x^2 + z^2) e^{x^2 + y^2} \). Es claro que \(f \) es diferenciable, y tenemos

\[
\text{grad} f(x, y, z) = 2 e^{x^2 + y^2} (x \cos(x^2 + z^2) - \sin(x^2 + z^2)),
\]

\[
y \cos(x^2 + z^2), -z \cos(x^2 + z^2) .
\]

2. Sea \(f : \mathbb{R}^3 \to \mathbb{R} \) dada por \(f(x, y, z) = x^2 y + y^3 \sin(z^2) \). Tenemos que \(f \) es diferenciable (de clase \(C^\infty \)) y

\[
\text{grad} f(x, y, z) = (2xy, x^2 + 3y^2 \sin(z^2), 2y^3 z \cos(z^2)) .
\]
Para finalizar esta sección probaremos el siguiente Teorema.

Teorema 6.1 Sea $U \subseteq \mathbb{R}^n$ un conjunto abierto y sea $f : U \rightarrow \mathbb{R}^m$. Entonces $Df(a)$ existe si todas las derivadas parciales $\frac{\partial f_i}{\partial x_j}(x)$ existen en un conjunto abierto que contiene al punto a y cada aplicación $\frac{\partial f_i}{\partial x_j} : U \rightarrow \mathbb{R}$ que asocia a x la derivada parcial $\frac{\partial f_i}{\partial x_j}(x)$ es continua.

Demostración. Basta probar para el teorema para el caso $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$. El caso general, $f : U \rightarrow \mathbb{R}^m$, se obtiene a partir de este considerando las funciones coordenadas $f_i : U \rightarrow \mathbb{R}$ ($i = 1, \ldots, m$) de f. Tenemos

$$f(a + h) - f(a) = f(a_1 + h_1, a_2, \ldots, a_n) - f(a_1, \ldots, a_n) + f(a_1 + h_1, a_2 + h_2, a_3, \ldots, a_n) - f(a_1 + h_1, a_2, \ldots, a_n) + \cdots + f(a_1 + h_1, \ldots, a_n + h_n) - f(a_1 + h_1, \ldots, a_{n-1} + h_{n-1}, a_n).$$

Definamos la función g_i por

$$g_i(t) = f(a_1 + h_1, \ldots, a_{i-1} + h_{i-1}, t, a_{i+1}, \ldots, a_n).$$

Entonces, cada g_i es una función real de variable real, y por el Teorema del Valor Medio tenemos que

$$f(a_1 + h_1, a_2, \ldots, a_n) - f(a_1, \ldots, a_n) = g(a_1 + h_1) - g(a_1) = h_1 g'(c_1) = h_1 \frac{\partial f}{\partial x_1}(c_1),$$
donde \(c_i \in]a_i, a_i + h[\).

Análogamente, para el término \(i \)-ésimo tenemos que

\[
\begin{align*}
&f(a_1 + h_1, \ldots, a_i + h_i, a_{i+1}, \ldots, a_n) - \\
&- f(a_1 + h_1, \ldots, a_{i-1} + h_{i-1}a_i, \ldots, a_n) = h_i g_i'(c_i) = h_i \frac{\partial f}{\partial x_i}(c_i),
\end{align*}
\]

donde \(c_i \) está entre \(a_i \) y \(a_i + h_i \).

Luego

\[
\lim_{h \to 0} \left| \frac{f(a + h) - f(a) - \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(a)}{|h|} \right| \leq \\
\lim_{h \to 0} \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i}(a_1 + h_1, \ldots, a_{i-1} + h_{i-1}, c_i, a_{i+1}, \ldots, a_n) - \frac{\partial f}{\partial x_i}(a) \right| \frac{|h_i|}{|h|} \\
\lim_{h \to 0} \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i}(a_1 + h_1, \ldots, a_{i-1} + h_{i-1}, c_i, a_{i+1}, \ldots, a_n) - \frac{\partial f}{\partial x_i}(a) \right| = 0
\]

pues \(|h_i|/|h| \leq 1\), las funciones \(\frac{\partial f}{\partial x_i}(x) \) son continuas en \(a_i \), y \(c_i \to a_i \) cuando \(h \to 0 \).

6.4 Clase de Diferenciabilidad

Ahora estudiaremos uno de los conceptos más importantes del cálculo diferencial, este es el de clase de diferenciabilidad de una función.

Definición 6.2 Sea \(U \subset \mathbb{R}^n \) un conjunto abierto. Decimos que una aplicación \(f : U \to \mathbb{R}^m \) es diferenciable en \(U \) si \(f \) es diferenciable en cada punto de \(U \).

Si \(f : U \to \mathbb{R}^m \) es diferenciable en \(U \), definimos la aplicación derivada
\[Df : U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \equiv \mathbb{R}^{nm} \equiv M(m \times n, \mathbb{R}) \] (6.26)

que a cada \(x \in U \) le asocia su derivada \(Df(x) \), la cual también podemos pensar como un elemento de \(M(m \times n, \mathbb{R}) \).

Note que la aplicación derivada \(Df \) no es necesariamente lineal.

Ejemplo. Sea \(T : \mathbb{R}^n \to \mathbb{R}^m \) una aplicación lineal. Sabemos que \(T \) es diferenciable en todo \(x \in \mathbb{R}^n \) y que \(DT(x) = T \). Luego, la aplicación derivada, \(DT : \mathbb{R}^n \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \), asocia a cada \(x \in \mathbb{R}^n \) la aplicación lineal \(T \), por lo tanto, en este caso \(DT \) es la aplicación constante \(DT(x) = T \) para todo \(x \in \mathbb{R}^n \).

Sea \(U \subset \mathbb{R}^n \) un conjunto abierto.

Definición 6.3 Decimos que una aplicación \(f : U \to \mathbb{R}^m \) es continuamente diferenciable o de clase \(C^1 \) en \(U \), y usamos la notación \(f \in C^1 \), si \(f \) es diferenciable en \(U \) y la aplicación derivada \(Df : U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \equiv \mathbb{R}^{nm} \) dada por \(x \to Df(x) \) es continua.

Observación. Escribiendo \(f = (f_1, \ldots, f_m) \) se tiene que \(f \) es de clase \(C^1 \) si, y sólo si, las derivadas parciales \(\frac{\partial f_i}{\partial x_i} \) existen para cada \(i = 1, \ldots, n \) y cada \(j = 1, \ldots, m \), y son continuas en \(U \).

Ejemplo. Sea \(f : \mathbb{R} \to \mathbb{R} \) la aplicación dada por
\[
 f(x) = \begin{cases}
 x^2 & \text{si } x > 0 \\
 0 & \text{si } x \leq 0
 \end{cases} .
\]

Es claro que
\[
 f'(x) = \begin{cases}
 2x & \text{si } x > 0 \\
 0 & \text{si } x \leq 0
 \end{cases} ,
\]

luego \(f' \) es continua y por lo tanto \(f \) es de clase \(C^1 \) en \(\mathbb{R} \).
Supongamos ahora que \(f : U \to \mathbb{R}^m \) es de clase \(C^1 \) en un abierto \(U \subset \mathbb{R}^n \), nos podemos preguntar si la aplicación derivada \(Df : U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \) es diferenciable en un punto \(x \in U \).

Si \(Df : U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \) es diferenciable en un punto \(x \in U \), decimos que \(f \) es dos veces diferenciable en \(x \) y usamos la notación \(D^2f(x) \) para indicar la derivada de la aplicación \(Df \) en el punto \(x \), tenemos

\[
D^2f(x) : \mathbb{R}^n \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m),
\]
es una aplicación lineal, luego \(D^2f(x) \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)) \).

Recordemos que el espacio vectorial \(\mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)) \) es isomorfo al espacio vectorial \(\mathcal{L}_2(\mathbb{R}^n, \mathbb{R}^m) = \{ B : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m ; B \text{ bilineal } \} \), de las aplicaciones bilineales.

En efecto, sea \(\Lambda : \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)) \to \mathcal{L}_2(\mathbb{R}^n, \mathbb{R}^m) \) la aplicación definida como sigue: a cada aplicación lineal \(T \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)) \) asignamos la aplicación bilineal \(\tilde{T} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m \) definida por \(\tilde{T}(u, v) = T_u(v) \), donde \(T_u : \mathbb{R}^n \to \mathbb{R}^m \) es la aplicación lineal definida del siguiente modo, la aplicación lineal \(T : \mathbb{R}^n \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \) asocia a cada vector \(u \in \mathbb{R}^n \) la aplicación lineal \(T_u \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \). De la linealidad de \(T \) tenemos \(T(u + \lambda v) = T(u) + \lambda T(v) \). Ahora, como \(T_u \) es una aplicación lineal \(\tilde{T} \) es bilineal.

Usando la identificación entre \(\mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)) \) y \(\mathcal{L}_2(\mathbb{R}^n, \mathbb{R}^m) \) dada arriba, podemos pensar el elemento \(D^2f(x) \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)) \) como la aplicación bilineal,

\[
D^2f(x) : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m.
\]

Definición 6.4 Decimos que una aplicación \(f : U \to \mathbb{R}^m \) es dos veces diferenciable en \(U \) si \(D^2f(x) \) existe para cada \(x \in U \).
Observación. Escribiendo \(f = (f_1, \ldots, f_m) \). Tenemos que \(D^2 f(x) \) existe si, y sólo si, las derivadas parciales de segundo orden \(\frac{\partial^2 f}{\partial x_i \partial x_k} \) existen y son continuas en \(U \), para cada \(i, k = 1, \ldots, n \) y cada \(j = 1, \ldots, m \).

Si \(f : U \to \mathbb{R}^m \) es dos veces diferenciable en \(U \) podemos definir la aplicación derivada segunda

\[
D^2 f : U \to L_2(\mathbb{R}^n, \mathbb{R}^m)
\]

que asocia a cada \(x \in U \) la aplicación bilineal \(D^2 f(x) : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m \).

Definición 6.5 Decimos que \(f \) es dos veces continuamente diferenciable o de clase \(C^2 \) en \(U \), notación \(f \in C^2 \), si la aplicación derivada segunda es continua en \(U \).

Inductivamente, supongamos que tenemos definidas las derivadas hasta orden \(k - 1 \), es decir, \(f : U \to \mathbb{R}^m \) es \(k - 1 \) veces diferenciable en \(U \). Como antes, podemos definir la aplicación derivada \(k - 1 \) de \(f \)

\[
D^{k-1} f : U \to \mathcal{L}_{k-1}(\mathbb{R}^n, \mathbb{R}^m),
\]

donde \(\mathcal{L}_{k-1}(\mathbb{R}^n, \mathbb{R}^m) \) es el espacio de las aplicaciones \((k-1)\)-lineales de \(\mathbb{R}^n \times \cdots \times \mathbb{R}^n \) en \(\mathbb{R}^m \). Si la aplicación \(D^{k-1} f \) es diferenciable en \(x \in U \), decimos que \(f \) es \(k \) veces diferenciable en \(x \). La derivada de \(D^{k-1} f \) en \(x \) es la aplicación lineal

\[
D^k f(x) = D(D^{k-1} f)(x) : \mathbb{R}^n \to \mathcal{L}_{k-1}(\mathbb{R}^n, \mathbb{R}^m),
\]

esto es, \(D^k f(x) \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}_{k-1}(\mathbb{R}^n, \mathbb{R}^m)) \). Este último espacio es isomorfo al espacio \(\mathcal{L}_k(\mathbb{R}^n, \mathbb{R}^m) \), de las aplicaciones \(k\)-lineales de \(\mathbb{R}^n \times \cdots \times \mathbb{R}^n \) \((k\)-veces) en \(\mathbb{R}^m \).
Si $D^{k-1}f$ es diferenciable en U, decimos que f es k veces diferenciable en U, como antes definimos la aplicación derivada k-ésima

$$D^k f : U \to \mathcal{L}(\mathbb{R}^n, \mathcal{L}_{k-1}(\mathbb{R}^n, \mathbb{R}^m)) \equiv \mathcal{L}_k(\mathbb{R}^n, \mathbb{R}^m).$$ (6.29)

Si la aplicación $D^k f$ es continua en U, decimos que f es k veces continuamente diferenciable o de clase C^k en U, usamos la notación $f \in C^k$.

Observación. Como antes, escribiendo $f = (f_1, \ldots, f_m)$ se tiene que f es de clase C^k en U si, y sólo si, las derivadas parciales de orden menor o igual a k de las funciones coordenadas f_j ($j = 1, \ldots, m$) existen y son continuas en U, es decir, para cada $\ell \leq k$ y cada colección de índices $\{i_1, \ldots, i_\ell\} \subset \{1, \ldots, n\}$ se tiene que

$$\frac{\partial^\ell f}{\partial x_{i_1} \cdots \partial x_{i_\ell}},$$

existen y son funciones continuas en U.

Finalmente, si para cada $k \in \mathbb{N}$ se tiene que $f \in C^k$, decimos que f es de clase C^∞ en U. Notación $f \in C^\infty$.

Observaciones.

1. Denotando por C^0 el conjunto de las aplicaciones continua, se tiene

$$C^\infty = C^0 \cap C^1 \cap \cdots.$$

2. En general C^{k+1} está estrictamente contenido en C^k. Para verlo tomamos $n = m = 1$, y definimos las aplicaciones $f_k : \mathbb{R} \to \mathbb{R}$ por

$$f_k(x) = \begin{cases} x^k & \text{si } x > 0 \\ 0 & \text{si } x \leq 0 \end{cases},$$
es claro que f_0 es discontinua, pues

$$f_0(x) = \begin{cases} 1 & \text{si } x > 0 \\ 0 & \text{si } x \leq 0 \end{cases},$$

la aplicación f_1 es continua, pero no diferenciable en el punto $x = 0$. Para $k \geq 2$ es claro que $\frac{df_k}{dx}(x) = k f_{k-1}$, luego $f_k \in C^{k-1}$ pero $f_k \notin C^k$.

Ejemplos.

1. Sea $T : \mathbb{R}^n \to \mathbb{R}^m$ una aplicación lineal. Tenemos que $DT : \mathbb{R}^n \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ es la aplicación constante $x \to DT(x) = T$, luego $D^kT = 0$ para todo $k \geq 2$. Por lo tanto $T \in C^\infty$.

2. Sea $B : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$ una aplicación bilineal. Tenemos la derivada de B es dada por $DB(x,y)(h,k) = B(x,k) + B(h,y)$ y $DB : \mathbb{R}^n \times \mathbb{R}^m \to \mathcal{L}(\mathbb{R}^n \times \mathbb{R}^m, \mathbb{R}^p)$ es la aplicación dada por $(x,y) \to B(x,\cdot) + B(\cdot, y)$, la cual es una aplicación lineal. Por lo tanto D^2B es una aplicación constante y $D^kB = 0$ para todo $k \geq 3$, en consecuencia $B \in C^\infty$.

Como ejercicio, el lector puede estudiar la derivada de una aplicación k–lineal $T : \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_k} \to \mathbb{R}^p$.

3. Del cálculo diferencial de una variable real, tenemos que las funciones polinomiales, exponenciales, logarítmicas, trigonométricas, etc. son de clase C^∞.

Proposición 6.3 Sea $f : U \to \mathbb{R}^m$ y sean $f_1, \ldots, f_m : U \to \mathbb{R}$ las funciones coordenadas de f. Entonces f es de clase C^k si, y sólo si, cada función coordenada f_j ($j = 1, \ldots, m$) es de clase C^k. Además,

$$D^k f(x) = \left(D^k f_1(x), \ldots, D^k f_m(x) \right).$$

(6.30)
Demostración. Inmediata.

Teorema 6.2 (Schwarz) Sea \(U \subset \mathbb{R}^n \) un conjunto abierto. Si \(f : U \rightarrow \mathbb{R} \) es de clase \(C^r \) \((r \geq 2)\). Entonces en cualquier punto de \(U \) las derivadas parciales de orden \(k \) para \(1 \leq k \leq r \), existen y su valor es independiente del orden en que realice la derivación, es decir, si \((j_1, \ldots, j_k)\) es una permutación de \((i_1, \ldots, i_k)\) entonces se tiene la igualdad

\[
\frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}} = \frac{\partial^k f}{\partial x_{j_1} \cdots \partial x_{j_k}}.
\]

Demostración. Vamos a hacer la demostración para el caso \(n = 2 \), el caso general es completamente análogo. Escribamos \(p_0 = (x_0, y_0) \in U \). Sea \(\phi(x) = f(x, y_0 + k) - f(x, y_0) \), donde \(k \) es pequeño. Para \(x \) suficientemente cercano a \(x_0 \), se tiene que \(\phi \) es una función de la variable \(x \). Aplicando el Teorema del Valor Medio a \(\phi \), para \(h \) pequeño obtenemos

\[
\phi(x_0 + h) - \phi(x_0) = h \frac{d\phi}{dx}(x_0 + \theta_1 h), \quad \text{donde } 0 < \theta_1 < 1,
\]

es decir,

\[
\phi(x_0 + h) - \phi(x_0) = h \left(\frac{\partial f}{\partial x}(x_0 + \theta_1 h, y_0 + k) - \frac{\partial f}{\partial x}(x_0 + \theta_1 h, y_0) \right).
\]

Ahora bien, para cada \(h \) apliquemos nuevamente el Teorema del Valor Medio a la segunda variable, en la igualdad del lado derecho anterior,

\[
\phi(x_0 + h) - \phi(x_0) = hhk \left(\frac{\partial^2 f}{\partial y \partial x}(x_0 + \theta_1 h, y_0 + \theta_2 k) \right)
\]

\[
= hhk \left(\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) + \eta \right),
\]

donde \(\eta \to 0 \) cuando \(h \to 0 \), y \(k \to 0 \) de cualquier forma, pues \(\frac{\partial^2 f}{\partial y \partial x} \) es continua. Podemos escribir la última expresión como
\[(f(x_0 + h, y_0 + k) - f(x_0 + h, y_0)) - (f(x_0, y_0 + k) - f(x_0, y_0)) = hk \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) + \eta hk.\]

Dividiendo esta igualdad por \(k\), y haciendo \(k \to 0\) se obtiene

\[\frac{\partial f}{\partial y}(x_0 + h, y_0) - \frac{f}{\partial y}(x_0, y_0) = h \left(\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) + \eta \right).\]

Finalmente, dividiendo esta igualdad por \(h\) y haciendo \(h \to 0\), obtenemos

\[\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) + \eta .\]

Lo que finaliza la prueba.

Ejemplo. La función \(f : \mathbb{R}^2 \to \mathbb{R}\) definida por

\[f(x, y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\ 0 & \text{si } (x, y) = (0, 0) \end{cases}\]

satisface que \(\frac{\partial^2 f}{\partial x \partial y}(0, 0) = \frac{\partial^2 f}{\partial y \partial x}(0, 0)\), aún cuando no satisface las condiciones del teorema de Schwarz.

En efecto, tenemos

\[\frac{\partial f}{\partial x}(0, 0) = \lim_{h \to 0} \frac{f(x, 0) - f(0, 0)}{h} = 0 ,\]

análogamente \(\frac{\partial f}{\partial y}(0, 0) = 0\). Ahora, para \((x, y) \neq (0, 0)\)

\[\frac{\partial f}{\partial x}(x, y) = \frac{2xy^4}{(x^2 + y^2)^2},\]

\[\frac{\partial f}{\partial y}(x, y) = \frac{2x^4y}{(x^2 + y^2)^2}.\]
Ahora,

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{y \to 0} \frac{\partial f}{\partial x}(0,y) - \frac{\partial f}{\partial x}(0,0) = 0,$$

y análogamente

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = 0,$$

luego se tiene que

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = 0.$$ Para \((x, y) \neq (0, 0)\) tenemos

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial y \partial x}(x, y) = \frac{8x^3y^3}{(x^2 + y^2)^2}.$$

Finalmente, tomando rectas del tipo \(y = mx\) vemos que

$$\lim_{(x, y) \to (0, 0)} \frac{\partial^2 f}{\partial y \partial x}(x, y) \neq 0 = \frac{\partial^2 f}{\partial y \partial x}(0,0),$$

de donde \(\frac{\partial^2 f}{\partial y \partial x}\) no es continua en \((0, 0)\), es decir, \(f\) no satisface las condiciones del teorema de Schwarz. Para esta función se tiene también que \(\frac{\partial f}{\partial x}\) y \(\frac{\partial f}{\partial y}\) no son diferenciables en el origen como puede ser verificado fácilmente.

6.5 Teoremas Fundamentales del Cálculo Diferencial

En esta sección estudiaremos los Teoremas fundamentales del cálculo diferencial en espacios euclideanos, estos son: Regla de la Cadena, Desigualdad del Valor Medio, Teorema de la Función Inversa y sus corolarios: Forma Local de las Inmersiones, Forma Local de la Submersiones, Teorema de la FunciónImplicita, y Teorema del Rango.

Teorema 6.3 (Regla de la Cadena). Sean \(U \subset \mathbb{R}^n\) y \(V \subset \mathbb{R}^m\) conjuntos abiertos. Sean \(f : U \to \mathbb{R}^m\) y \(g : V \to \mathbb{R}^p\) aplicaciones tales que \(f(U) \subset V\), con \(f\) diferenciable en \(x \in U\) y \(g\) diferenciable en
$y = f(x) \in V$. Entonces la aplicación compuesta, $g \circ f : U \to \mathbb{R}^p$ es diferenciable en x. Además, $D(g \circ f)(x) = Dg(f(x)) \circ Df(x)$.

Demostración. Como f es diferenciable en $x \in U$, tenemos que

$$f(x + h) = f(x) + Df(x)h + \rho(h)|h|, \text{ con } \lim_{h \to 0} \rho(h) = 0.$$ Análogamente, como g es diferenciable en $y = f(x) \in V$, podemos escribir $g(y + k) = g(y) + Dg(y)k + \sigma(k)|k|$, con $\lim_{k \to 0} \sigma(k) = 0$.

Ahora,

$$(g \circ f)(x + h) = g(f(x + h))$$

$$= g(f(x) + Df(x)h + \rho(h)|h|)$$

$$= g(y + Df(x)h + \rho(h)|h|).$$

Si h es pequeño, entonces $k = Df(x)h + \rho(h)|h|$ también es pequeño, pues $Df(x)$ es una aplicación lineal, por lo tanto continua, y sabemos que si $T : \mathbb{R}^n \to \mathbb{R}^m$ es una aplicación lineal entonces existe una constante $c \geq 0$ tal que $|T(h)| < c|h|$ ($c = \sup\{|T(v)| : |v| \leq 1\}$). Luego $|k| \leq |Df(x)h| + |\rho(h)||h| \leq (c + |\rho(h)||)|h|$ y como $\lim_{h \to 0} \rho(h) = 0$, dado $\varepsilon > 0$, existe $\delta > 0$ tal que $|h| < \delta$ implica $|\rho(h)| < \varepsilon$. Por lo tanto, $|k| < (c + \varepsilon)\delta$ para $|h| < \delta$.

De lo anterior, podemos escribir

$$(g \circ f)(x + h) = g(y + k)$$

$$= g(y) + Dg(y)k + \sigma(k)|k|$$

$$= g(y) + Dg(y)(Df(x)h + \rho(h)|h|) + \sigma(k)|Df(x)h + \rho(h)|h||$$

$$= g(y) + Dg(y)(Df(x)h + Dg(y)(\rho(h)|h|) + \sigma(k)|Df(x)h + \rho(h)|h||$$
\[g(y) + Dg(y) \circ Df(x)h + |h|(Dg(y)\rho(h) + \sigma(k)|Df(x)(h/|h|) + \rho(h))\]

Ahora, sea \(\tau(h) = Dg(y)\rho(h) + \sigma(k)|Df(x)(h/|h|) + \rho(h)| \). Tenemos,
\[(g \circ f)(x + h) = g(y + k) = g(y) + Dg(y) \circ Df(x)h + \tau(h)|h| \]. Por lo tanto, sólo nos resta probar que \(\lim_{h \to 0} \tau(h) = 0 \). Para ello recordemos que
\[|k| < (c + \varepsilon)|h| \text{ si } 0 < |h| < \delta, \text{ luego } k \to 0 \text{ cuando } h \to 0. \]
Por otra parte, como el vector \(h/|h| \) tiene norma 1, se sigue que
\[|Df(x)(h/|h|)| \leq c \] y en consecuencia
\[\lim_{h \to 0} \tau(h) = \lim_{h \to 0} (Dg(y)\rho(h) + \sigma(k)|Df(x)(h/|h|) + \rho(h)) = 0. \]

Corolario 6.4 Sean \(f \) y \(g \) como en el Teorema anterior. Si \(f \) y \(g \) son de clase \(C^k \). Entonces \(g \circ f \) es de clase \(C^k \).

Demostración. Tenemos \(D(g \circ f)(x) = Dg(f(x)) \circ Df(x) \). Definamos las aplicaciones \(B : \mathcal{L}(\mathbb{R}^m, \mathbb{R}^p) \times \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p) \) y \(\Gamma : U \to \mathcal{L}(\mathbb{R}^m, \mathbb{R}^p) \times \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \) por \(B(T, L) = T \circ L \) y \(\Gamma(x) = (Dg(f(x)), Df(x)) \), respectivamente. Tenemos que \(\Gamma = (Dg \circ f, Df) \), es claro que \(B \) es bilineal, por lo tanto de clase \(C^\infty \). Además, \(D(g \circ f) = B \circ \Gamma \).

Ahora procedemos por inducción. La afirmación es válida para \(k = 0 \), pues si \(f \) y \(g \) son continuas entonces \(g \circ f \) es continua, es decir, \(f \in C^0 \) y \(g \in C^0 \) implica \(g \circ f \in C^0 \).

Supongamos que la afirmación es válida para todo \(\ell < k \), esto es, si \(f, g \in C^\ell \) entonces \(g \circ f \in C^\ell \). De esto se sigue que \(Df, Dg \) y \(Dg \circ f \) son de clase \(C^{\ell-1} \). Por lo tanto, \(\Gamma = (Dg \circ f, Df) \) es de clase \(C^{k-1} \) y como \(B \in C^\infty \), tenemos que \(D(g \circ f) = B \circ \Gamma \) es de clase \(C^{k-1} \), es decir, \(g \circ f \) es de clase \(C^k \).
Proposición 6.4 La aplicación inversión de matrices, $\text{inv} : \text{GL}(\mathbb{R}^n) \to \text{GL}(\mathbb{R}^n)$, $\text{inv}(X) = X^{-1}$ es de clase C^∞.

Demostración. Sea $E = \mathcal{L}(\mathcal{L}(\mathbb{R}^n), \mathcal{L}(\mathbb{R}^n))$, donde $\mathcal{L}(\mathbb{R}^n) = \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$.

Definamos la aplicación $B : \mathcal{L}(\mathbb{R}^n) \times \mathcal{L}(\mathbb{R}^n) \to E$, por $B(L,T)H = L \circ H \circ T$. Es claro que $B \in C^\infty$, pues es bilineal.

Ya mostramos que la aplicación inv es diferenciable y su derivada viene dada por

$$D\text{inv}(X)H = -X^{-1}HX^{-1} = B(X^{-1}, X^{-1})H = B(\text{inv}(X), \text{inv}(X))H.$$

Luego, $D\text{inv} = B \circ (\text{inv}, \text{inv}).$

Ahora procedemos por inducción. Es claro que inv es continua. Supongamos que $\text{inv} \in C^{k-1}$. Como $B \in C^\infty$, se sigue del Corolario anterior y de la igualdad $D\text{inv} = B \circ (\text{inv}, \text{inv})$ que $D\text{inv} \in C^{k-1}$, es decir, $\text{inv} \in C^k$.

Corolario 6.5 Sea $U \subset \mathbb{R}^n$ un conjunto abierto y $f : U \to \mathbb{R}^m$ una aplicación diferenciable en $x \in U$. Supongamos que el conjunto $V = f(U) \subset \mathbb{R}^m$ es abierto y que existe una aplicación $g : V \to \mathbb{R}^n$ tal $g \circ f = I_U$ y $f \circ g = I_V$ (I_A denota la aplicación identidad del conjunto A). Si g es diferenciable en el punto $y = f(x) \in V$. Entonces $Df(x) : \mathbb{R}^n \to \mathbb{R}^m$ es un isomorfismo, y su isomorfismo inverso es $Dg(y) : \mathbb{R}^m \to \mathbb{R}^n$. En particular, se tiene que $n = m$.

Demostración. Como $D\text{id}_U(x) = \text{id}_{\mathbb{R}^n}$ y $D\text{id}_V(y) = \text{id}_{\mathbb{R}^m}$, se sigue que $D(g \circ f)(x) = Dg(y) \circ Df(x) = I_{\mathbb{R}^n}$ y $D(f \circ g)(y) = Df(x) \circ Dg(y) = I_{\mathbb{R}^m}$, y de esto el resultado es inmediato.

Ahora sean $f : U \subset \mathbb{R}^n \to \mathbb{R}^m$ y $g : V \subset \mathbb{R}^m \to \mathbb{R}^p$ como en el Teorema de la Regla de la Cadena. Escribiendo $f = (f_1, f_2, \ldots, f_m)$ y $g = (g_1, g_2, \ldots, g_p)$, vemos que para $i = 1, 2, \ldots, n$ y $j = 1, 2, \ldots, p$,

Cálculo Diferencial en Espacios Euclideanos

144
\[
\frac{\partial(g_j \circ f)}{\partial x_i}(x) = \sum_{k=1}^{m} \frac{\partial g_j}{\partial y_k}(f(x)) \frac{\partial f_k}{\partial x_i}(x)
\]
(6.31)

Esta fórmula es la que usualmente aparece en los textos de cálculo para expresar la regla de la cadena.

Corolario 6.6 (Reglas de Derivación)

1. Sea \(U \subset \mathbb{R}^n \) un conjunto abierto. Si \(f, g : U \rightarrow \mathbb{R}^m \) son aplicaciones diferenciables en \(x \in U \) entonces las aplicaciones \(f \pm g \) y \(\lambda f \), donde \(\lambda \in \mathbb{R} \) es una constante, son diferenciables en \(x \). Además,

\[
D(f \pm g)(x) = Df(x) \pm Dg(x), \quad y \quad D(\lambda f)(x) = \lambda Df(x).
\] (6.32)

2. Sea \(U \subset \mathbb{R}^n \) un conjunto abierto y sea \(h : U \rightarrow \mathbb{R} \) una aplicación diferenciable en \(x \in U \), con \(h(x) \neq 0 \). Entonces la aplicación \(\frac{1}{h} : U \rightarrow \mathbb{R} \), definida por \(\frac{1}{h}(x) = \frac{1}{h(x)} \) es diferenciable en \(x \). Además,

\[
D \left(\frac{1}{h} \right)(x) = -\frac{1}{(h(x))^2} Dh(x).
\] (6.33)

3. Sea \(U \subset \mathbb{R}^\ell \) un conjunto abierto. Si \(f : U \rightarrow \mathbb{R}^n \) y \(g : U \rightarrow \mathbb{R}^m \) son aplicaciones diferenciables en \(x \in U \), sea \(B : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^p \) una aplicación bilineal. Definamos la aplicación \(\Theta : U \rightarrow \mathbb{R}^p \) por \(\Theta = B(f, g) \), es decir, \(\Theta(y) = B(f(y), g(y)) \). Entonces \(\Theta \) es diferenciable en \(x \). Además,

\[
D\Theta(x)u = B(Df(x)u, g(x)) + B(f(x), Dg(x)u).
\] (6.34)

En particular, si \(m = n = 1 \) y \(B = p : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \) es el producto,
p(x, y) = xy, se tiene

\[D(f \cdot g)(x)u = g(x)Df(x)u + f(x)Dg(x)u \quad \text{(fórmula clásica.)} \]

Demostración. Definamos las aplicaciones \(s : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m \), \(\lambda^* : \mathbb{R}^m \to \mathbb{R}^m \), \(\text{inv} : \mathbb{R} - \{0\} \to \mathbb{R} - \{0\} \), y \((f, g) : U \to \mathbb{R}^n \times \mathbb{R}^m \), por

\[s(u, v) = u + v, \quad \lambda^*(u) = \lambda u, \quad \text{inv}(t) = \frac{1}{t}, \quad (f, g)(x) = (f(x), g(x)), \]

respectivamente. Tenemos, \(f + g = s \circ (f, g) \), \(\lambda g = \lambda^* \circ g \), \(\Theta = B \circ (f, g) \), luego por la regla de la cadena, se sigue el resultado.

Teorema 6.7 (Valor Medio, caso real). Sea \(f : [a, b] \to \mathbb{R} \) una aplicación continua. Supongamos que \(f \) es diferenciable en el intervalo abierto \(]a, b[\). Entonces existe \(c \in]a, b[\) tal que

\[f(b) - f(a) = f'(c)(b - a). \]

El significado geométrico de este Teorema es bien conocido y se traduce en que bajo las hipótesis anteriores existe un punto \(c \in]a, b[\), para el cual la recta tangente al gráfico de \(f \) en el punto \((c, f(c)) \) es paralela a la cuerda que une los puntos \((a, f(a)) \) y \((b, f(b)) \).

Dados \(a, b \in \mathbb{R}^n \), definimos el segmento cerrado y el segmento abierto de recta que une \(a \) y \(b \), denotados por \([a, b] \) y \(]a, b[\), respectivamente, como los conjuntos

\[[a, b] = \{ a + t(b - a) : 0 \leq t \leq 1 \} \]

\[]a, b[= \{ a + t(b - a) : 0 < t < 1 \}. \]

Usando esta notación. Tenemos el siguiente teorema.

Teorema 6.8 (del Valor Medio) Sean \(U \subset \mathbb{R}^n \) un conjunto abierto y \(f : U \to \mathbb{R} \) una aplicación continua. Dado \(a \in U \), supongamos que
Sergio Plaza

147

para cada $x \in U$ el segmento cerrado de recta $[a, x]$ está contenido en U y que f es diferenciable en cada punto del segmento abierto de recta $]a, x[$. Entonces existe $\theta \in \mathbb{R}$ con $0 < \theta < 1$ tal que

$$f(x) - f(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a + \theta(x - a))(x_i - a_i).$$

(6.36)

Demostración. Sea $\alpha(t) = a + t(x - a)$, es decir, cada función componente de α es $\alpha_i(t) = a_i + t(x_i - a_i)$ ($i = 1, \ldots, n$). La correspondiente curva es un segmento de recta con $\alpha(0) = a$ y $\alpha(1) = x$. La función α es diferenciable, de hecho C^∞. Luego, $f \circ \alpha : [0, 1] \to \mathbb{R}$ es diferenciable en $]0, 1[$. Por lo tanto, por el Teorema del Valor Medio para funciones reales de variable real, se tiene que existe $\theta \in \mathbb{R}$ con $0 < \theta < 1$ tal que

$$(f \circ \alpha)(1) - (f \circ \alpha)(0) = (f \circ \alpha)'(\theta)(x - a),$$

y por el Teorema de la Regla de la Cadena se sigue el resultado.

A seguir veamos si podemos tener un Teorema de Valor Medio como arriba para funciones $f : U \subset \mathbb{R}^n \to \mathbb{R}^m$ ($m > 1$).

Consideremos la aplicación $f : [0, 2\pi] \to \mathbb{R}^2$, definida por $f(t) = (\cos(t), \sin(t))$. Es claro que f es continua en $[0, 2\pi]$ y diferenciable en $]0, 2\pi[$, y $\frac{df}{dt}(t) = (-\sin(t), \cos(t))$. Como $\left| \frac{df}{dt}(t) \right| = 1$ para todo t, se sigue que $\frac{df}{dt}(t) \neq 0$, para todo en $]0, 2\pi[$. Si el Teorema del Valor Medio fuese válido en este caso, deberíamos tener que existe $c \in]0, 2\pi[$ tal que $f(2\pi) - f(0) = 2\pi \frac{df}{dt}(c)$, pero como $f(0) = f(2\pi) = (1, 0)$ no podemos tener la igualdad anterior. En este ejemplo vemos, que en general, no podemos esperar una igualdad tipo valor medio para aplicaciones $f : \mathbb{R}^n \to \mathbb{R}^m$. Además, el ejemplo muestra que tenemos una desigualdad de la forma $||f(2\pi) - f(0)|| \leq \left| \frac{df}{dt}(t) \right| |b - a|$.

Teorema 6.9 (Desigualdad del Valor Medio) Sean $U \subset \mathbb{R}^n$ un conjunto abierto y $f : U \to \mathbb{R}^m$ una aplicación continua. Supongamos que
el segmento cerrado de recta $[a, b]$ está contenido en U y que f es diferenciably en cada punto del segmento abierto de recta $]a, b[$. Entonces

$$
\|f(b) - f(a)\| \leq \|b - a\| \sup_{0 < t < 1} \|Df((1-t)a + tb)\|. \tag{6.37}
$$

6.5.1 Teorema de la Función Inversa

Definición 6.6 Sean $U, V \subset \mathbb{R}^n$ conjuntos abiertos y sea $f : U \rightarrow V$. Decimos que f es un difeomorfismo, si f es un homeomorfismo diferenciable cuyo inverso f^{-1} también es diferenciable. Si ambas, f y f^{-1} son de clase C^k, decimos que f es un difeomorfismo de clase C^k.

Observaciones.

1. Si $f : U \subset \mathbb{R}^n \rightarrow V \subset \mathbb{R}^n$ es un difeomorfismo, entonces para cada $x \in U$ la derivada $Df(x) : \mathbb{R}^n \rightarrow \mathbb{R}^n$ es un isomorfismo cuyo inverso es $(Df(x))^{-1} = Df^{-1}(f(x))$. Además, si $f^{-1} : V \rightarrow U$ es el homeomorfismo inverso de f entonces f^{-1} también es un difeomorfismo.

2. Si $f : U \subset \mathbb{R}^n \rightarrow V \subset \mathbb{R}^n$ y $g : V \rightarrow W \subset \mathbb{R}^n$ son difeomorfismo, de la Regla de la Cadena, se sigue que $g \circ f$ es un difeomorfismo.

Ejemplos.

1. Sea $f :]-1, 1[\rightarrow \mathbb{R}$ dada por $f(x) = \tan(x\pi/2)$. Entonces f es un difeomorfismo de clase C^∞.

2. Coordenadas Polares. Dado $\alpha > 0$ sea $U_\alpha = \mathbb{R}^2 - L_\alpha$, donde L_α es el rayo de pendiente α comenzando en el origen de \mathbb{R}^2,
con 0 ∈ \(L_\alpha \). Claramente \(U_\alpha \) es un conjunto abierto. Ahora consideremos la banda abierta \(V_\alpha = \{(r, \theta) \in \mathbb{R}^2 : r > 0, \alpha < \theta < \alpha + 2\pi\} \subset \mathbb{R}^2 \) y definamos \(\psi_\alpha : V_\alpha \rightarrow U_\alpha \) por \(\psi_\alpha(r, \theta) = (r \cos(\theta), r \sin(\theta)) \). Note que \(\psi_\alpha \) aplica cada segmento vertical \(s_r = \{(r, \theta) : \alpha < \theta < \alpha + 2\pi\} \subset V_\alpha \) en el círculo agujereado (= círculo menos un punto) de radio \(r \) y cada recta horizontal \(r_\theta = \{(r, \theta) : r > 0\} \subset V_\alpha \) en el rayo partiendo desde el origen, que forma un ángulo \(\theta \) con el rayo \(L_\alpha \).

Tenemos que \(\psi_\alpha : V_\alpha \rightarrow U_\alpha \) es una biyección \(C^\infty \) y su inversa también es de clase \(C^\infty \) (se deja al lector calcular \(\psi_\alpha^{-1} \)). Ahora,

\[
J \psi_\alpha(r, \theta) = \begin{pmatrix}
\cos(\theta) & -r \sin(\theta) \\
\sin(\theta) & r \cos(\theta)
\end{pmatrix}
\]

es inversible para cada \((r, \theta) \in V_\alpha \). Sea \(\varphi_\alpha = \psi_\alpha^{-1} : U_\alpha \rightarrow V_\alpha \) el difeomorfismo inverso, \(\varphi_\alpha \) es llamado sistema de coordenadas polares en \(U_\alpha \).

3. coordenadas cilíndricas. Sean \(V_\alpha \subset \mathbb{R}^2 \) y \(U_\alpha \subset \mathbb{R}^2 \) los abiertos definidos en el ejemplo anterior. Sean \(W_\alpha = V_\alpha \times \mathbb{R} \) y \(Z_\alpha = U_\alpha \times \mathbb{R} \), ambos conjuntos con abierto en \(\mathbb{R}^3 \). Definamos \(\varphi_\alpha : W_\alpha \rightarrow Z_\alpha \) por \(\varphi_\alpha(r, \theta, z) = (r \cos(\theta), r \sin(\theta), z) \). Tenemos que \(\varphi_\alpha \) es un difeomorfismo \(C^\infty \) y la matriz de jacobiana de \(\varphi_\alpha \) es dada por

\[
J \varphi_\alpha(r, \theta, z) = \begin{pmatrix}
\cos(\theta) & -r \sin(\theta) & 0 \\
\sin(\theta) & r \cos(\theta) & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

Es claro que \(J \varphi_\alpha \) es inversible. El difeomorfismo \(\varphi_\alpha^{-1} \) es llamado sistema de coordenadas cilíndricas.
4. coordenadas esféricas. En $\mathbb{R}^3 - \{0\}$ también podemos considerar las coordenadas esféricas (r, θ, ϕ). Para ellos sea $V = \{(r, \phi, \theta) \in \mathbb{R}^3 : r > 0, 0 < \phi < 2\pi, 0 < \theta < \pi\}$, claramente este conjunto es abierto. Definamos la función $\Phi : V \to \mathbb{R}^3$ por

$$\Phi(r, \phi, \theta) = (r \cos(\phi) \sin(\theta), r \sin(\phi) \sin(\theta), r \cos(\theta)).$$

Tenemos que Φ es un difeomorfismo de clase C^∞ sobre $W = \operatorname{Im}(\Phi)$ el cual es un conjunto abierto de \mathbb{R}^3 (se deja como ejercicio al lector describir el abierto W). El difeomorfismo inverso Φ^{-1} es llamado sistema de coordenadas esféricas en \mathbb{R}^3. La matriz jacobiana de Φ es dada por

$$J\Phi(r, \phi, \theta) = \begin{pmatrix} \cos(\phi) \sin(\theta) & -r \sin(\phi) \sin(\theta) & r \cos(\phi) \cos(\theta) \\ \sin(\phi) \sin(\theta) & r \cos(\phi) \sin(\theta) & r \sin(\phi) \cos(\theta) \\ \cos(\theta) & 0 & -r \sin(\theta) \end{pmatrix}$$

es fácil ver que esta matriz tiene inversa.

Observación Si $f : U \subset \mathbb{R}^n \to V \subset \mathbb{R}^n$ es un homeomorfismo diferenciable, no necesariamente f es un difeomorfismo. Un ejemplo simple para ilustrar esta situación es dado por el homeomorfismo $f : \mathbb{R} \to \mathbb{R}$ dado por $f(x) = x^3$ el cual es C^∞, pero su inverso $f^{-1}(x) = x^{1/3}$ no es diferenciable en $x = 0$.

Definición 6.7 Sea $U \subset \mathbb{R}^n$ un conjunto abierto y sea $f : U \to \mathbb{R}^n$. Decimos que f es un difeomorfismo local en U si, para cada $x \in U$ existen vecindades abiertas $V_x \subset U$ de x y $W_{f(x)} \subset \mathbb{R}^n$ de $f(x)$, tales
que \(f/V_x : V_x \to W_{f(x)} \) es un difeomorfismo. Ademáis, si para cada \(x \in U \) se tiene que \(f \) es un difeomorfismo de clase \(C^k \) en una vecindad de \(x \), decimos que \(f \) es un difeomorfismo local de clase \(C^k \).

Ejemplo. Consideremos la aplicación \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) dada por \(f(x, y) = (e^x \cos(y), e^x \sin(y)) \). Es claro que \(f \) es un difeomorfismo local \(C^\infty \). Como \(f \) no es inyectiva, no puede ser un difeomorfismo en todo \(\mathbb{R}^2 \).

Por otra parte, si \(J \subset \mathbb{R} \) es un intervalo abierto con longitud menor que \(2\pi \), entonces \(f/(\mathbb{R} \times J) : \mathbb{R} \times J \to \mathbb{R}^2 \) es un difeomorfismo sobre su imagen, el cual es un subconjunto abierto de \(\mathbb{R}^2 \) (se deja a cargo del lector describir Im(\(f \))).

Desde la definición se sigue que todo difeomorfismo local es una aplicación abierta.

Nota. Sea \(J \subset \mathbb{R} \) un intervalo abierto. Si \(f : J \to \mathbb{R} \) es un difeomorfismo local entonces \(f \) es un difeomorfismo. La prueba es fácil y se deja al lector como ejercicio.

En \(\mathbb{R}^n \) definimos la función distancia (usual) \(d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) dada por

\[
d(x, y) = ||x - y|| = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}.
\]

Con esta distancia (y las análogas definidas usando las normas equivalentes \(|| \cdot ||_M \) o \(|| \cdot ||_S \)) se tiene que \(\mathbb{R}^n \) es un espacio métrico completo, es decir, una sucesión en \(\mathbb{R}^n \) es convergente si, y sólo si, es de Cauchy. Además, si \(C \subset \mathbb{R}^n \) es un conjunto cerrado, entonces \(C \) con la distancia \(d_C \) inducida por la de \(\mathbb{R}^n \) también es un espacio métrico completo.

Definición 6.8 Decimos que una aplicación \(f : A \subset \mathbb{R}^n \to \mathbb{R}^m \) es una
contracción, si
\[\lambda = \text{Lip}(f) = \sup_{x,y \in A, x \neq y} \frac{d(f(x), f(y))}{d(x, y)} < 1. \]

El número \(\lambda \) es llamado el factor de contracción de \(f \).

Es inmediato ver que toda contracción es una aplicación continua, pues se tiene que \(f(x), f(y) \leq \lambda d(x, y) \), y basta tomar \(\delta = \varepsilon \) en la definición de continuidad.

Teorema 6.10 (de la contracción). Si \(C \subset \mathbb{R}^n \) es un conjunto cerrado y \(f : C \to C \) una contracción entonces \(f \) tiene un único punto fijo \(x_f \), esto es, \(f(x_f) = x_f \). Además, dado cualquier punto \(x_0 \in C \), la sucesión \((x_k)_{k \in \mathbb{N}}\), definida por \(x_1 = f(x_0), x_2 = f(x_1), \ldots, x_k = f(x_{k-1}), \ldots \) es convergente y \(\lim_{k \to \infty} x_k = x_f \).

Demostración. Sea \(\lambda \) el factor de contracción de \(f \), entonces

\[
d_C(x_{k+1}, x_k) = d_C(f(x_k), f(x_{k-1})) \\
\leq \lambda d_C(x_k, x_{k-1}) \\
\leq \lambda^2 d_C(x_{k-1}, x_{k-2}) \\
\vdots \\
\leq \lambda^k d_C(x_1, x_0),
\]

luego

\[
d_C(x_{k+\ell}, x_k) \leq \sum_{i=0}^{\ell-1} d_C(x_{k+i+1}, x_{k+i}) \\
\leq \sum_{i=0}^{\ell-1} \lambda^{k+i} d_C(x_1, x_0)
\]
\[\leq \lambda_0 d_C(x_0, x_1) \sum_{i=0}^{\infty} \lambda^i \]
\[\leq \frac{\lambda^k}{1 - \lambda} d_C(x_1, x_0) . \]

Como \(0 < \lambda < 1 \) se tiene que \(\lim_{k \to \infty} \lambda^k = 0 \), de donde se sigue que \(\lim_{k \to \infty} d_C(x_{k+1}, x_k) = 0 \), esto es, la sucesión \((x_k)_{k \in \mathbb{N}}\) es de Cauchy en \(C \), por lo tanto convergente. Sea \(x_f = \lim_{k \to \infty} x_k \), tenemos \(x_f \in C \), pues \(C \) es cerrado. Como \(f \) es continua, \(f(x_f) = f(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} f(x_k) = \lim_{k \to \infty} x_{k+1} = x_f \), esto es, \(f(x_f) = x_f \). Para mostrar la unicidad de \(x_f \), supongamos que existe \(a \in C \) con \(f(a) = a \), entonces \(d_C(x_f, a) = d_C(f(x_f), f(a)) \leq \lambda d_C(x_f, a) \) y como \(0 < \lambda < 1 \) se concluye que \(x_f = a \).

Teorema 6.11 (Perturbación de la Identidad). Sean \(U \subset \mathbb{R}^n \) un conjunto abierto y \(\psi : U \to \mathbb{R}^n \) una contracción. Entonces la aplicación \(f = Id + \psi : U \to \mathbb{R}^n \), donde \(Id \) es la aplicación identidad, es un homeomorfismo desde el conjunto abierto \(U \) sobre el conjunto abierto \(f(U) \) de \(\mathbb{R}^n \).

Demostración. Sea \(0 < \lambda < 1 \) el factor de contracción de \(\psi \). Tenemos,
\[||f(x) - f(y)|| = ||x - y + \psi(x) - \psi(y)|| \geq ||x - y|| - ||\psi(x) - \psi(y)|| \geq ||x - y|| - \lambda ||x - y|| = (1 - \lambda)||x - y||, \] esto es, \((1 - \lambda)||x - y|| \leq ||f(x) - f(y)|| \). Por lo tanto, si \(x \neq y \) se sigue que \(f(x) \neq f(y) \), luego \(f \) es inyectiva, y en consecuencia una biyección sobre su imagen.

Sea \(f^{-1} : f(U) \to U \) la aplicación inversa de \(f \). La desigualdad \((1 - \lambda)||x - y|| \leq ||f(x) - f(y)|| \) implica que \(f^{-1} \) es continua, pues tomando \(z = f(x) \) y \(w = f(y) \) (es decir, \(f^{-1}(z) = x, f^{-1}(w) = y \)), se tiene,
\[||f^{-1}(z) - f^{-1}(w)|| \leq \frac{1}{1 - \lambda} ||z - w|| . \]

De lo anterior, \(f : U \to f(U) \) es un homeomorfismo.
Sea $V = f(U)$, debemos probar que V es un conjunto abierto en \mathbb{R}^n. Dado $a \in U$, sea $b = f(a) \in V$. Elijamos $\delta > 0$ tal que la bola cerrada de centro en a y radio δ, $B[a; \delta]$, este contenida en U. Esto lo podemos hacer, pues como U es abierto, existe $\delta_1 > 0$ tal que la bola abierta de centro en a y radio δ_1, $B(a; \delta_1)$, está contenida en U, tomando $\delta = \delta_1/2$, por ejemplo, se tiene lo pedido. Ahora sea $y \in B(b; (1-\lambda)\delta)$, definamos la aplicación $\psi_y : U \rightarrow \mathbb{R}^n$ por $\psi_y(x) = y - \psi(x)$. Note que si $x_0 \in U$ es un punto fijo de ψ_y (es decir, $x_0 = \psi_y(x_0)$) entonces $x_0 + \psi(x_0) = f(x_0) = y$. Luego para mostrar que y es imagen de algún punto $x \in U$, basta ver que la aplicación ψ_y tiene un punto fijo en U. Para mostrar esta última afirmación es suficiente probar las dos afirmaciones siguientes,

a) ψ_y es una contracción;

b) $\psi_y(B[a; \delta]) \subset B[a; \delta]$.

Probadas estas dos afirmaciones, por el Teorema anterior ψ_y tiene un punto fijo $x_0 \in B[a; \delta]$, lo cual soluciona nuestro problema.

Prueba de a. Sean $u, v \in U$, entonces $||\psi_y(u) - \psi_y(v)|| = ||y - \psi(u) - (y + \psi(v))|| \leq \lambda ||u - v||$.

Prueba de b. Si $x \in B[a; \delta]$ entonces $||\psi_y(x) - a|| = ||y - \psi(x) - a|| = ||y - \psi(a) + \psi(a) - \psi(x) - a|| \leq ||y - (a + \psi(a))|| + ||\psi(a) - \psi(x)|| \leq ||y - f(a)|| + \lambda ||x - a|| = ||y - b|| + \lambda ||x - a|| \leq (1 - \lambda)\delta + \delta = \delta$, la última parte se obtiene del hecho que $y \in B[b; (1-\lambda)\delta]$, es decir, $||y - b|| \leq (1 - \lambda)\delta$.

Con esto la prueba del Teorema está completa.

Corolario 6.12 Suponga que $f : U \rightarrow \mathbb{R}^n$ es de la forma $f = T + \psi$, donde $\psi : U \rightarrow \mathbb{R}^n$ es una contracción de razón λ con $0 < \lambda < 1$, $y
\[T \in \operatorname{GL}(\mathbb{R}^n) \] es tal que \(\lambda \|T^{-1}\| < 1 \). Entonces \(f \) es un homeomorfismo desde \(U \) sobre un conjunto abierto de \(\mathbb{R}^n \).

Demostración. Aplicando el Teorema anterior a la aplicación \(g = T^{-1} \circ f = Id + T^{-1} \circ \psi \) se obtiene el resultado.

Teorema 6.13 (de la Función Inversa). Sea \(U \subset \mathbb{R}^n \) un conjunto abierto y \(f : U \to \mathbb{R}^n \) una aplicación de clase \(C^k \), con \(k \geq 1 \). Supongamos que en un punto \(x_0 \in U \) la derivada \(Df(x_0) : \mathbb{R}^n \to \mathbb{R}^n \) es un isomorfismo. Entonces \(f \) es un difeomorfismo local de clase \(C^k \) desde una vecindad abierta \(V \subset U \) de \(x_0 \) sobre una vecindad abierta \(W \subset \mathbb{R}^n \) de \(f(x_0) \).

Demostración. Sea \(v \in \mathbb{R}^n \) con \(v \neq 0 \), tomando la traslación \(T_v : \mathbb{R}^n \to \mathbb{R}^n \) dada por \(T_v(x) = x - v \), tenemos que \(T_v(v) = 0 \). Ahora la aplicación \(g = T_f(x_0) \circ f \circ T_{-x_0} : U_0 \to \mathbb{R}^n \), donde \(U_0 = T_{x_0}(U) \subset \mathbb{R}^n \) es un conjunto abierto con \(0 \in U_0 \), satisface \(g(0) = 0 \) y \(Dg(0) = Df(x_0) \). Luego, basta demostrar el Teorema para \(g \) y lo tenemos de inmediato para \(f \). En resumen, sin pérdida de generalidad, podemos suponer que \(x_0 = 0 \) y \(f(0) = 0 \).

Sea \(r(x) = f(x) - Df(0)x \). Tenemos que \(r \in C^k \), y que \(Dr(0) = Df(0) - Df(0) = 0 \). Ahora, elegimos \(\lambda \) tal que \(0 < \lambda \|Df(0)^{-1}\| < 1 \). Como \(Dr \) es continua y \(Dr(0) = 0 \), existe una bola abierta \(V \) de centro en 0, tal que para cada \(x \in V \) se tiene que \(\|Dr(x)\| < \lambda \). Por la Desigualdad del Valor Medio, para \(x, y \in V \) se tiene \(\|r(x) - r(y)\| < \lambda \|x - y\| \), es decir, \(r \) es una contracción, y del corolario anterior concluimos que \(f/V \) es un homeomorfismo desde \(V \) sobre un abierto \(W \subset \mathbb{R}^n \), con \(0 \in W \). Como \(\operatorname{GL}(\mathbb{R}^n) \subset \operatorname{L}(\mathbb{R}^n) \) es un conjunto abierto, y \(Df(0) \in \operatorname{GL}(\mathbb{R}^n) \), y la aplicación derivada \(Df : U \to \operatorname{L}(\mathbb{R}^n) \) es continua, podemos elegir \(V \) de modo que \(Df(x) \in \operatorname{GL}(\mathbb{R}^n) \), para cada \(x \in V \).
Como alcanza su mínimo, digamos tenemos que la aplicación permanece acotada cuando \(\theta > 0 \). Para probar que \(\lim_{k \to 0} \sigma(k) = 0 \), debemos probar que \(\lim_{k \to 0} \frac{\sigma(k)}{|k|} = 0 \).

Pongamos \(f(x + u) = f(x) + k = y + k \), esto es, \(y = f(x + u) - k \).

Como \(f \) es continua se sigue que \(k \to 0 \) cuando \(u \to 0 \). Tenemos

\[
\begin{align*}
u & = x + u - x = h(f(x + u)) - h(f(x)) = h(y + k) - h(y) \\
& = (Df(x))^{-1}k + \sigma(k) = (Df(x))^{-1}(f(x + u) - f(x)) + \sigma(k) \\
& = (Df(x))^{-1}(Df(x)u + r(u)) + \sigma(k) = u + (Df(x))^{-1}r(u) + \sigma(k)
\end{align*}
\]

luego, \(u = u + (Df(x))^{-1}r(u) + \sigma(k) \), de donde \(\sigma(k) = -(Df(x))^{-1}r(u) \).

Por lo tanto,

\[
\frac{\sigma(k)}{|k|} = -\frac{|u|}{|k|}(Df(x))^{-1}\left(\frac{r(u)}{|u|}\right).
\]

Como la transformación lineal \(L = (Df(x))^{-1} : \mathbb{R}^n \to \mathbb{R}^n \) es continua, se tiene que \(\lim_{u \to 0} (Df(x))^{-1}(r(u)/|u|) = 0 \), pues \(\lim_{u \to 0} \frac{r(u)}{|u|} = 0 \). Por lo tanto, para probar que \(\lim_{k \to 0} \frac{\sigma(k)}{|k|} = 0 \), basta probar que el cuociente \(\frac{|u|}{|k|} \) permanece acotado cuando \(k \to 0 \).

Por la compacidad de la esfera unitaria \(S^{n-1} = \{v \in \mathbb{R}^n : ||v|| = 1\} \) tenemos que la aplicación \(\alpha : S^{n-1} \to \mathbb{R} \) dada por \(\alpha(v) = ||Df(x)v|| \) alcanza su mínimo, digamos \(\theta \), y como \(Df(x) \in GL(\mathbb{R}^n) \) se sigue que \(\theta > 0 \). Como \(\lim_{u \to 0} \frac{r(u)}{|u|} = 0 \), dado \(\varepsilon > 0 \) existe \(\delta > 0 \) tal que \(\left| \frac{r(u)}{|u|} \right| < \varepsilon \) cuando \(|u| < \delta \). De la relación, \(k = f(x + u) - f(x) = Df(x)u + r(u) \) y del hecho que para cada \(v \in \mathbb{R}^n \) con \(v \neq 0 \), el vector \(\frac{v}{|v|} \) tiene norma 1, tenemos que

\[
\frac{|u|}{|k|} = \frac{|u|}{|f(x + u) - f(x)|}
\]
Ahora, si elegimos \(0 < \varepsilon < \theta\) tenemos que existe \(\delta > 0\) tal que \(\left|u\right| < \delta\) implica \(\left|\frac{r(u)}{u}\right| < \varepsilon\). Como \(\left|Df(x)\frac{u}{|u|}\right| \geq \theta\), obtenemos \(\left|\frac{u}{|u|}\right| \leq \frac{1}{\theta - \varepsilon}\) si \(|u| < \delta\). Por otra parte \(k \to 0\) cuando \(u \to 0\). De esto se tiene lo pedido y hemos probado que \(h\) es diferenciable en \(y \in W\). Como \(y\) era arbitrario, \(h\) es diferenciable en \(W\).

Ahora tenemos que \(Dh(y) = (Df(x))^{-1} = (Df(h(y)))^{-1}\), donde \(y = f(x)\). Considerando las aplicaciones \(h : W \to V\), \(Df : V \to GL(\mathbb{R}^n)\) e \(inv : GL(\mathbb{R}^n) \to GL(\mathbb{R}^n)\) tenemos que \(Dh(y) = (inv \circ Df \circ h)(y)\), es decir, la aplicación derivada \(Dh\) es dada por la compuesta \(inv \circ Df \circ h\).

Como \(inv\) es de clase \(C^\infty\), \(Df \in C^{k-1}\), y \(h \in C^0\) se sigue que \(Dh\) es continua, por lo tanto \(h \in C^1\). Para probar que \(h \in C^k\) si \(f \in C^k\), se procede por inducción y es dejado al lector como ejercicio al lector.

Corolario 6.14 Sea \(U \subset \mathbb{R}^n\) un conjunto abierto y \(f : U \to \mathbb{R}^n\) una aplicación \(C^r\), con \(r \geq 1\). Entonces, \(f\) es un difeomorfismo local en \(U\) si, y sólo si, para cada \(x \in U\) se tiene que \(Df(x) \in GL(\mathbb{R}^n)\), esto es, si y sólo si, para cada \(x \in U\) se tiene que \(\text{det}(Jf(x)) \neq 0\).

Corolario 6.15 Sea \(U \subset \mathbb{R}^n\) un conjunto abierto y sea \(f : U \to \mathbb{R}^n\) una aplicación de clase \(C^r\), con \(r \geq 1\). Si \(f\) es inyectiva y \(Df(x) \in GL(\mathbb{R}^n)\) para cada \(x \in U\) entonces \(f\) es un difeomorfismo desde \(U\).
sobre el conjunto abierto $f(U) \subset \mathbb{R}^n$.

La prueba de estos corolario es fácil y se deja cargo del lector.

Ejemplo.

Sea $f : \mathbb{R}^2 \to \mathbb{R}^2$ la aplicación dada por $f(x, y) = (e^x \cos(y), e^x \sin(y))$, es claro que $f \in C^\infty$ y para cada $(x, y) \in \mathbb{R}^2$,

$$
\det Jf(x, y) = \det \begin{pmatrix}
 e^x \cos(y) & -e^x \sin(y) \\
 e^x \sin(y) & e^x \cos(y)
\end{pmatrix} = e^x \neq 0,
$$
luego f es un difeomorfismo local C^∞.

Observación. Una manera natural de producir ejemplos es la siguiente. Sean $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ conjuntos abiertos, y sean $f : U \to \mathbb{R}^n$ y $g : V \to \mathbb{R}^m$ difeomorfismos (locales) de clase C^r con $r \geq 1$. Definamos $f \times g : U \times V \to \mathbb{R}^n \times \mathbb{R}^m$, por $(f \times g)(x, y) = (f(x), g(y))$. Entonces $f \times g$ es un difeomorfismo (local) C^r. Usando esto, construya ejemplos de difeomorfismos (locales). La prueba se deja al lector como ejercicio.

6.5.2 Forma Local de las Submersiones

Definición 6.9 Sea $U \subset \mathbb{R}^n$ abierto y $f : U \to \mathbb{R}^m$ una aplicación diferenciable. Decimos que f es una submersión si, para cada $x \in U$ la derivada $Df(x) : \mathbb{R}^n \to \mathbb{R}^m$ es una aplicación lineal sobreyectiva. En particular, $n \geq m$, y podemos escribir $n = m + p$, con $p \geq 0$. (En particular, el rango de $Jf(x)$ es m.)

Ejemplos

(a) Sea $\pi : \mathbb{R}^{n+m} \to \mathbb{R}^m$, la proyección en las últimas m coordenadas,

$$
\pi(x_1, \ldots, x_n, x_{n+1}, \ldots x_{n+m}) = (x_{n+1}, \ldots, x_{n+m}), \; \pi \text{ es lineal y so-}
$$
breyectiva, por lo tanto, $D\pi(x) = \pi$, para todo $x \in \mathbb{R}^{n+m}$, en consecuencia π es una submersión.

Este ejemplo es el más importante, pues el Teorema de la Forma Local de las Submersiones establece que, localmente, toda submersión C^r con $r \geq 1$, es equivalente a la proyección π en un sentido que se expresa en el teorema más adelante.

(b) Sea $f : J \subset \mathbb{R} \rightarrow \mathbb{R}$, donde J intervalo abierto. Si $f'(t) \neq 0$ para todo $t \in J$, se tiene que f es una submersión.

(c) Todo difeomorfismo local $f : U \subset \mathbb{R}^n \rightarrow \mathbb{R}^n$ es una submersión.

(d) Si las aplicaciones $f : U \subset \mathbb{R}^n \rightarrow \mathbb{R}^\ell$ y $g : V \subset \mathbb{R}^m \rightarrow \mathbb{R}^p$ son submersiones entonces la aplicación $f \times g : U \times V \rightarrow \mathbb{R}^\ell \times \mathbb{R}^p$ definida por $(f \times g)(x, y) = (f(x), g(y))$ es una submersión de clase de diferenciabilidad el mínimo entre la clase de diferenciabilidad de f y de g.

La verificación en cada uno de los ejemplos anteriores es inmediata.

Nota. Si $L : \mathbb{R}^n \rightarrow \mathbb{R}$ es una aplicación lineal entonces se tiene que o bien L es la aplicación lineal nula o bien L es sobreyectiva.

En efecto, si L no es la aplicación nula, entonces existe $v \in \mathbb{R}^n$ tal que $L(v) = a \neq 0$. Luego, $L(\frac{1}{a}v) = 1$. Por lo tanto, dado $t \in \mathbb{R}$ arbitrario, tenemos que $L(t\frac{1}{a}v) = t$, es decir, L es sobreyectiva.

Teorema 6.16 (Forma Local de las Submersiones). Sean $U \subset \mathbb{R}^n$ abierto y $f : U \rightarrow \mathbb{R}^m$ una submersión C^k, con $k \geq 1$. Sea $x_0 \in U$ entonces para cualquier descomposición en suma directa $\mathbb{R}^n = E \oplus F$, con $x_0 = (v_0, w_0)$ tal que $\partial_2 f(x_0) = Df(x_0)/F : F \rightarrow \mathbb{R}^m$ es un isomorfismo, existe un difeomorfismo C^k, $h : V \times W \rightarrow Z$, tal que
para cada \((v, w) \in V \times W\), \((f \circ h)(v, w) = w\), donde \(V \subset E \equiv \mathbb{R}^{n-m}\), \(W \subset \mathbb{R}^m\), y \(Z \subset U\) son abiertos, con \(v_0 \in V\), \(f(x_0) \in W\), y \(x_0 \in Z\).

Gráficamente

![Gráfico](attachment:grafico.png)

Antes de dar la prueba del Teorema, observemos que siendo \(Df(x_0) : \mathbb{R}^n \to \mathbb{R}^m\) sobreyectiva se tiene que \(n \geq m\), y como una descomposición en suma directa de \(\mathbb{R}^n = E \oplus F\), podemos elegir aquella dada por \(E = \ker(Df(x_0))\) y \(F = E^\perp\), el espacio ortogonal a \(E\). En realidad, podemos elegir \(F\) como cualquier subespacio de \(\mathbb{R}^n\) que sea suplementar a \(E\), puesto que si \(L : \mathbb{R}^n \to \mathbb{R}^m\) es una aplicación lineal sobreyectiva, denotando el espacio cuociente \(\mathbb{R}^n/\ker(L)\) por \(F\), entonces por el Teorema del Isomorfismo, \(L/F : F \to \mathbb{R}^m\) es un isomorfismo.

Demostración. Sin pérdida de generalidad, podemos suponer \(x_0 = 0\) y \(f(x_0) = 0\). Escribiendo \(f\) en término de sus funciones coordenadas, \(f = (f_1, f_2, \ldots, f_m)\) y renumerando las funciones coordenadas \(f_i's\) de \(f\) y las coordenadas \((x_1, x_2, \ldots, x_n)\) de \(\mathbb{R}^n\), si es necesario, podemos suponer que
Además, podemos suponer que $E = \mathbb{R}^{n-m}$, $F = \mathbb{R}^m$ y que $\mathbb{R}^n = \mathbb{R}^{n-m} \times \mathbb{R}^m$.

Definamos la aplicación $\Theta : U \subset \mathbb{R}^n = \mathbb{R}^{n-m} \times \mathbb{R}^m \to \mathbb{R}^{n-m} \times \mathbb{R}^m$ por $\Theta(v, w) = (v, f(v, w))$ es claro que Θ es C^k, y que para $x_0 = (0, 0) \in U$ se tiene $D\Theta(0, 0)(h, k) = (h, \partial_1 f(0, 0)h + \partial_2 f(0, 0)k)$, donde $\partial_1 f(0, 0) = \frac{Df(0, 0)}{\mathbb{R}^{n-m}} : \mathbb{R}^{n-m} \to \mathbb{R}^{n-m}$ y $\partial_2 f(0, 0) = \frac{Df(0, 0)}{\mathbb{R}^m} : \mathbb{R}^m \to \mathbb{R}^m$, esta última aplicación lineal es un isomorfismo, por hipótesis. La aplicación lineal $L : \mathbb{R}^{n-m} \times \mathbb{R}^m \to \mathbb{R}^{n-m} \times \mathbb{R}^m$, dada por $L(u, v) = (u, (\partial_2 f(0, 0))^{-1}(v - \partial_1 f(0, 0)u))$ es la inversa de $D\Theta(0, 0)$ (verificación rutinaria). Luego por el Teorema de la Función Inversa, Θ es un difeomorfismo local C^k desde una vecindad abierta de $(0, 0)$ en $\mathbb{R}^{n-m} \times \mathbb{R}^m$, la cual podemos elegir de la forma $V \times W$, donde $V \subset \mathbb{R}^{n-m}$ con $0 \in V$ y $W \subset \mathbb{R}^m$ con $0 \in W$, y ambos V y W son conjuntos abiertos. Pongamos $Z = \Theta^{-1}(V \times W)$ es claro que $Z \subset \mathbb{R}^n$ es un conjunto abierto. Definamos $h : V \times W \to Z$ por $h = \Theta^{-1}$. Como $\Theta(v, w) = (v, f(v, w))$, necesariamente h es de la forma $h(u, w) = (u, h_2(u, w))$. Tenemos que $(v, w) = \Theta \circ h(v, w) = \Theta(v, h_2(v, w)) = (v, f(v, h_2(v, w))) = (v, f \circ h(v, w))$, luego $(f \circ h)(v, w) = w = \pi_2(v, w)$, donde $\pi_2 : \mathbb{R}^{n-m} \times \mathbb{R}^m \to \mathbb{R}^m$ es la proyección en la segunda coordenada.

Observación. Del Teorema se sigue que toda submersión es una aplicación abierta, pues la proyección π lo es.
Teorema 6.17 (Función Implícita). Sea $U \subset \mathbb{R}^n$ un conjunto abierto y sea $f : U \to \mathbb{R}^m$ una aplicación C^r, con $r \geq 1$. Supongamos que $\mathbb{R}^n = E \oplus F$ es una descomposición en suma directa, tal que para $x_0 = (v_0, w_0) \in E \oplus F$ se tiene que $\partial_2 f(x_0) = Df(x_0)/F : F \to \mathbb{R}^m$ es un isomorfismo. Pongamos $c = f(x_0)$. Entonces existen abiertos $V \subset E$ con $v_0 \in V$ y $Z \subset U$ con $x_0 \in Z$, con la propiedad que para cada $v \in V$, existe $\xi(v) \in F$ tal que $(v, \xi(v)) \in Z$ y $f(v, \xi(v)) = c$. Además, la aplicación $\xi : V \to F$, definida de este modo es de clase C^r y su derivada viene dada por la fórmula siguiente

$$D\xi(v) = - (\partial_2 f(v, \xi(v)))^{-1} \circ \partial_1 f(v, \xi(v)).$$

Demostración. Como en el Teorema anterior podemos, sin pérdida de generalidad suponer que $x_0 = (0,0)$, $f(0,0) = 0$, $E = \mathbb{R}^{n-m}$, y que $F = \mathbb{R}^m$. Con la notación anterior, tomando $Z = h(V \times W)$, tenemos que $h(v, w) = (v, h_2(v, w))$ para $(v, w) \in V \times W$. Definamos $\xi(v) = h_2(v, 0)$. Es claro que $\xi : V \to \mathbb{R}^m$ es de clase C^r, y que $f(v, \xi(v)) = f(v, h_2(v, 0)) = f \circ h(v, 0) = \pi_2(v, 0) = 0$.

Además, si $(v, w) \in V \times W$, satisface $f(v, w) = 0$, entonces $(v, w) = h \circ \Theta(v, w) = h(v, f(v, w)) = h(v, 0) = (v, h_2(v, 0)) = (v, \xi(v))$, por lo tanto $w = \xi(v)$.

Para mostrar la última afirmación del Corolario, derivamos la igualdad $f(v, \xi(v)) = 0$ y obtenemos

$$\partial_1 f(v, \xi(v)) + \partial_2 f(v, \xi(v)) D\xi(v) = 0,$$

luego, $D\xi(v) = - (\partial_2 f(v, \xi(v)))^{-1} \circ \partial_1 f(v, \xi(v))$.

Observación. Geométricamente, el Teorema de la Función Implícita significa que el conjunto $f^{-1}(0) \cap Z$ es el gráfico, relativo a la descomposición $\mathbb{R}^n = \mathbb{R}^{n-m} \times \mathbb{R}^m$, de la aplicación $\xi : V \to \mathbb{R}^m$.
Ejemplos

1. Si la ecuación \(F(x, y, z) = 0 \) define implícitamente \(z = f(x, y) \) para todo \(x, y \in U \subset \mathbb{R}^2 \) (\(U \) abierto), entonces podemos calcular las derivadas parciales de \(z = f(x, y) \) en todos los puntos donde \(\partial_3 F(x, y, z) \neq 0 \).

En efecto, escribimos \(g(x, y) = F(u_1(x, y), u_2(x, y), u_3(x, y)) \), donde \(u_1(x, y) = x, \ u_2(x, y) = y, \) y \(u_3(x, y) = f(x, y) \), la descomposición de \(\mathbb{R}^3 \) es dada, en este caso, por \(\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R} \). Por la regla de la cadena aplicada a la ecuación \(F(x, y, f(x, y)) = 0 \) obtenemos

\[
\frac{\partial g}{\partial x} = \partial_1 F \frac{\partial u_1}{\partial x} + \partial_2 F \frac{\partial u_2}{\partial x} + \partial_3 F \frac{\partial u_3}{\partial x} = 0
\]

\[
\frac{\partial g}{\partial y} = \partial_1 F \frac{\partial u_1}{\partial y} + \partial_2 F \frac{\partial u_2}{\partial y} + \partial_3 F \frac{\partial u_3}{\partial y} = 0.
\]

Ahora, como

\[
\frac{\partial u_1}{\partial x} = 1, \quad \frac{\partial u_2}{\partial x} = 0, \quad \frac{\partial u_3}{\partial x} = \frac{\partial f}{\partial x}, \quad y \quad \frac{\partial u_3}{\partial y} = 0,
\]

la primera ecuación se transforma en \(\partial_1 F + \partial_3 F \frac{\partial f}{\partial x} = 0 \), y de aquí nos queda

\[
\frac{\partial f}{\partial x} = -\frac{\partial_1 F(x, y, f(x, y))}{\partial_3 F(x, y, f(x, y))},
\]

en todos los puntos donde \(\partial_3 F(x, y, f(x, y)) \neq 0 \). De modo análogo, obtenemos

\[
\frac{\partial f}{\partial y} = -\frac{\partial_2 F(x, y, f(x, y))}{\partial_3 F(x, y, f(x, y))}.
\]

Podemos denotar estas fórmulas como sigue

\[
\frac{\partial f}{\partial x} = -\frac{\partial F}{\partial x} \frac{\partial F}{\partial z}, \quad \frac{\partial f}{\partial y} = -\frac{\partial F}{\partial y} \frac{\partial F}{\partial z}.
\]

Por ejemplo, si \(F(x, y, z) = y^2 + xz + z^2 - e^z - c = 0 \) define \(z \) como función de \(x, y \). Determinemos primero el valor de la constante
c de modo que \(f(0, e) = 2 \) y enseguida calculamos las derivadas parciales de \(f \).

Tenemos que para \(x = 0 \), \(y = e \) y \(z = 2 \) nos queda \(F(0, e, 2) = 0 \) se satisface cuando \(c = 4 \), luego \(F(x, y, z) = y^2 + xz + z^2 - e^2 - 4 = 0 \), y por las fórmulas anteriores

\[
\frac{\partial f}{\partial x} = -\frac{z}{x + 2z - e}, \quad \frac{\partial f}{\partial y} = -\frac{2y}{x + 2z - e},
\]
evaluando en los valores dados de \(x \) e \(y \) se obtiene el resultado

\[
\frac{\partial f}{\partial x}(0, e) = -\frac{2}{2e - e^2}, \quad \frac{\partial f}{\partial y}(0, e) = -\frac{2e}{2e - e^2}.
\]

2. Si las dos ecuaciones

\[
F(x, y, z) = 0 \quad G(x, y, z) = 0
\]
definen \(x \) e \(y \) como función de \(z \), es decir, \(x = h_1(z) \) e \(y = h_2(z) \), para todo \(z \) en un intervalo abierto \([a, b] \). Como antes, podemos calcular las derivadas de \(h_1(z) \) y de \(h_2(z) \).

En este caso usamos la descomposición \(\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R} \). Definamos las funciones \(f(z) = F(h_1(z), h_2(z), z) \) y \(g(z) = G(h_1(z), h_2(z), z) \).

Entonces \(f(z) = 0 \) y \(g(z) = 0 \) para todo \(z \in]a, b[\). Luego \(f'(z) = 0 \) y \(g'(z) = 0 \) en ese intervalo. Por otra parte,

\[
f'(z) = \frac{\partial F}{\partial x} h'_1(z) + \frac{\partial F}{\partial y} h'_2(z) + \frac{\partial F}{\partial z},
\]

\[
g'(z) = \frac{\partial G}{\partial x} h'_1(z) + \frac{\partial G}{\partial y} h'_2(z) + \frac{\partial G}{\partial z}.
\]

Ahora debemos resolver el sistema de ecuaciones lineales

\[
\frac{\partial F}{\partial x} h'_1(z) + \frac{\partial F}{\partial y} h'_2(z) = -\frac{\partial F}{\partial z}
\]

\[
\frac{\partial G}{\partial x} h'_1(z) + \frac{\partial G}{\partial y} h'_2(z) = -\frac{\partial G}{\partial z}
\]
respecto de \(h_1'(z) \) y \(h_2'(z) \). Usando la notación

\[
\frac{\partial (F,G)}{\partial (u,v)} = \det \begin{pmatrix}
\frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\
\frac{\partial G}{\partial u} & \frac{\partial G}{\partial v}
\end{pmatrix},
\]

nos queda

\[
h_1'(z) = -\frac{\partial (F,G)}{\partial (z,y)} \frac{\partial (F,G)}{\partial (x,y)}, \quad h_2'(z) = -\frac{\partial (F,G)}{\partial (x,z)} \frac{\partial (F,G)}{\partial (x,y)}.
\]

6.5.3 Forma Local de las Inmersiones

Definición 6.10 Sean \(U \subset \mathbb{R}^n \) un conjunto abierto y \(f : U \to \mathbb{R}^m \) una aplicación \(C^r \), con \(r \geq 1 \). Decimos que \(f \) es una inmersión, si para cada \(x \in U \) la aplicación lineal \(Df(x) : \mathbb{R}^n \to \mathbb{R}^m \) es inyectiva. En particular, se tiene que \(n \leq m \).

Nota. Sea \(L : \mathbb{R} \to \mathbb{R}^n \) una aplicación lineal. Entonces o bien \(L \) es la aplicación nula o bien \(L \) es inyectiva. Esto es fácil de probar y se deja a cargo del lector.

Ejemplos

1. Sea \(i : \mathbb{R}^n \to \mathbb{R}^m = \mathbb{R}^n \times \mathbb{R}^{m-n} \) la aplicación inclusión dada por \(i(x) = (x,0) \), es claro que \(i \in C^\infty \) y que \(Di(x) = i \). Por lo tanto \(i \) es una inmersión \(C^\infty \). Este ejemplo es particularmente importante, el Teorema de la Forma Local de las Inmersiones establece que toda inmersión es localmente como la aplicación \(i \), en el sentido del teorema más abajo.

2. Sea \(f : J \subset \mathbb{R} \to \mathbb{R}^m \), donde \(J \) es un intervalo abierto. Si \(f \in C^k \) \((k \geq 1) \) y \(\frac{df(t)}{dt} \neq 0 \) para todo \(t \in J \), entonces \(f \) es una inmersión \(C^k \).
3. Sea $U \subset \mathbb{R}^n$ un conjunto abierto, y sea $f : U \to \mathbb{R}^m$ una aplicación de clase C^r ($r \geq 1$). Entonces la aplicación $F : U \to \mathbb{R}^n \times \mathbb{R}^m \equiv \mathbb{R}^{n+m}$ dada por $F(x) = (x, f(x))$ es una inmersión C^r, pues $DF(x)v = (v, Df(x)v)$, la cual claramente es inyectiva.

4. Recuerde del Algebra Lineal que si $u, v \in \mathbb{R}^3$ entonces u, v son linealmente independientes si, y sólo si, el producto vectorial $u \times v \neq 0$.

Ahora, sea $U \subset \mathbb{R}^2$ un conjunto abierto y sea $\varphi : U \to \mathbb{R}^3$ una aplicación C^r ($r \geq 1$). Entonces φ es una inmersión si, y sólo si,

$$\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \neq 0,$$

en todo punto de U. Por ejemplo, sea $U \subset \mathbb{R}^2$ es un conjunto abierto y $f : U \to \mathbb{R}$ es una aplicación de clase C^r ($r \geq 1$), y $F : U \to \mathbb{R}^3$ es definida por $F(x, y) = (x, y, f(x, y))$ entonces

$$\frac{\partial F}{\partial x} = \left(1, 0, \frac{\partial f}{\partial x}\right)$$

$$\frac{\partial F}{\partial y} = \left(0, 1, \frac{\partial f}{\partial y}\right)$$

y

$$\frac{\partial F}{\partial x} \times \frac{\partial F}{\partial y} = \left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1\right) \neq 0.$$

Ahora, sea $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$ dada por $\varphi(u, v) = (u \cos(v), u\sen(v), u^2/2)$, se tiene

$$\frac{\partial \varphi}{\partial u} = (\cos(v), \sen(v), u)$$

$$\frac{\partial \varphi}{\partial v} = (-u \sen(v), u \cos(v), 0)$$
y si \(u \neq 0 \) entonces

\[
\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} = u(-u \cos(v), -u \sin(v), 1) \neq 0.
\]

Teorema 6.18 (Forma Local de las Inmersiones). Sea \(U \subset \mathbb{R}^n \) un conjunto abierto y \(f : U \rightarrow \mathbb{R}^m \) una aplicación \(C^r \), con \(r \geq 1 \). Sea \(x_0 \in U \), tal que \(Df(x_0) : \mathbb{R}^n \rightarrow \mathbb{R}^m \) es inyectiva. Entonces existe un difeomorfismo \(C^r \), \(h : Z \rightarrow V \times W \), donde \(Z \subset \mathbb{R}^m \), \(V \subset U \), y \(W \subset \mathbb{R}^{m-n} \) son conjuntos abiertos, con \(f(x_0) \in Z \), \(x_0 \in V \), y \(0 \in W \), tales que \(f(V) \subset Z \) y \(h \circ f(x) = i(x) = (x,0) \).

Demostración. Sin pérdida de generalidad, podemos suponer que \(x_0 = 0 \) y que \(f(0) = 0 \). Como \(Df(0) : \mathbb{R}^n \rightarrow \mathbb{R}^m \) es inyectiva se sigue que \(Df(0) : \mathbb{R}^n \rightarrow Df(0)\mathbb{R}^n = \text{Im}(Df(0)) \) es un isomorfismo. Sea \(E = Df(0)\mathbb{R}^n \) y sea \(F \) cualquier subespacio de \(\mathbb{R}^m \), suplementar a \(E \). Tenemos que \(F \) es isomorfo a \(\mathbb{R}^{m-n} \) y que \(\mathbb{R}^m = E \oplus \mathbb{R}^{m-n} \equiv \mathbb{R}^n \times \mathbb{R}^{m-n} \). Ahora definamos la aplicación \(\Theta : U \times F \rightarrow \mathbb{R}^m \), por \(\Theta(x,y) = (f(x),y) \), es claro que \(\Theta \in C^r \). Tenemos entonces \(\Theta(x,0) = (f(x),0) \equiv f(x) \), y la derivada \(D\Theta(0,0) : \mathbb{R}^n \times \mathbb{R}^{m-n} \rightarrow \mathbb{R}^m = \mathbb{R}^n \times \mathbb{R}^{m-n} \) es dada por \(D\Theta(0,0) = (Df(0),Id) \), donde \(Id : \mathbb{R}^{m-n} \rightarrow \mathbb{R}^{m-n} \) es la aplicación identidad, luego \(D\Theta(0,0) \) es un isomorfismo. Por el Teorema de la Función Inversa, \(\Theta \) es un difeomorfismo local \(C^r \) desde una vecindad abierta \(V \times W \) de \((0,0) \) sobre una vecindad abierta \(Z = \Theta(V \times W) \), con \((0,0) \in V \times W \). Sea \(h = \Theta^{-1} \), \(h : Z \rightarrow V \times W \). Es claro que \(h \) es un difeomorfismo \(C^r \) y \(h \circ f(x) = h \circ \Theta(x,0) = (x,0) \).

Geométricamente este Teorema se ve en la figura siguiente,
Corolario 6.19 Bajo las hipótesis del Teorema anterior, existe una vecindad abierta V de x_0, tal que $f : V \to f(V)$ es un homeomorfismo, cuya aplicación inversa $f^{-1} : f(V) \to V$ es la restricción a $f(V)$ de una aplicación C^r, $\xi : Z \to V$.

Demostración. Sea $\pi_1 : V \times W \to V$ la proyección en la primera coordenada, $\pi_1(x, y) = x$. Entonces $(\pi_1 \circ h \circ f)(x, 0) = \pi_1(x, 0) = x$ y llamando $\xi = \pi_1 \circ h$, se sigue que $\xi / f(V) = f^{-1}$. Claramente, $\xi \in C^r$.

Recordemos que el rango de una aplicación lineal $T : \mathbb{R}^n \to \mathbb{R}^m$, denotado por rango (T), es definido como sigue: rango$(T) = r$ si, y sólo si, la matriz de T tiene un determinante menor de orden $r \times r$ no nulo y todo determinante menor de orden $(r + 1) \times (r + 1)$ es nulo, equivalentemente, rango$(T) = r$ si, y sólo si, la matriz de T tiene r filas.
(columnas) linealmente independientes y cualquier sistema de $r + 1$ filas
(columnas) es linealmente dependiente.

Definición 6.11 Sea $U \subset \mathbb{R}^n$ un conjunto abierto. El rango de una
aplicación diferenciable $f : U \subset \mathbb{R}^n \to \mathbb{R}^m$, U abierto, en un punto
$x \in U$ es el rango de $Df(x)$. Usaremos la notación $\text{rang}(f(x))$ para
indicar el rango de f en x.

Observación. Si f tiene rango r en un punto $x \in U$, entonces existe
una vecindad abierta $V \subset U$ de x, tal que para cada $y \in V$ se tiene que
$\text{rang}(f(y)) \geq r$.

Teorema 6.20 (del Rango) Sean $U \subset \mathbb{R}^{m+n}$ un conjunto abierto y
$f : U \to \mathbb{R}^{m+p}$ una aplicación C^r, con $r \geq 1$. Supongamos que el
rango de f es constante igual a m para cada $x \in U$. Entonces existen
difeomorfismos C^r, α desde un abierto de $\mathbb{R}^m \times \mathbb{R}^n$ que contiene a x, β
desde un abierto que contiene a $f(x)$ en $\mathbb{R}^m \times \mathbb{R}^p$, tales que $\beta \circ f \circ \alpha (x, y) =
(x, 0)$.

Este Teorema es ilustrado geométricamente en la figura siguiente.
Su demostración es una consecuencia inmediata de los Teoremas de la
Forma local de la Inmersiones y de la Submersiones.
Definición 6.12 Sean $U \subset \mathbb{R}^n$ un conjunto abierto y $f: U \rightarrow \mathbb{R}^m$ una aplicación diferenciable. Decimos que un punto $x_0 \in U$ es un punto regular de f, si $\text{rango}(f(x_0))$ es maximal, es decir, $\text{rango}(f(x_0)) = \min\{n,m\}$. Si x_0 no es regular, decimos que es singular.

Los Teoremas anteriores, son llamados Teoremas de rango máximo y el siguiente teorema los resume en uno sólo. Usaremos la siguiente notación: si $f: U \subset \mathbb{R}^m \rightarrow \mathbb{R}^m$ entonces

$$
\begin{vmatrix}
\frac{\partial f_1(0)}{\partial x_1} & \frac{\partial f_1(0)}{\partial x_2} & \cdots & \frac{\partial f_1(0)}{\partial x_m} \\
\frac{\partial f_2(0)}{\partial x_1} & \frac{\partial f_2(0)}{\partial x_2} & \cdots & \frac{\partial f_2(0)}{\partial x_m} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m(0)}{\partial x_1} & \frac{\partial f_m(0)}{\partial x_2} & \cdots & \frac{\partial f_m(0)}{\partial x_m}
\end{vmatrix}_{m \times m}
$$

$$
\begin{vmatrix}
\frac{\partial f_1}{\partial x_1}(0) & \frac{\partial f_1}{\partial x_2}(0) & \cdots & \frac{\partial f_1}{\partial x_m}(0) \\
\frac{\partial f_2}{\partial x_1}(0) & \frac{\partial f_2}{\partial x_2}(0) & \cdots & \frac{\partial f_2}{\partial x_m}(0) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1}(0) & \frac{\partial f_m}{\partial x_2}(0) & \cdots & \frac{\partial f_m}{\partial x_m}(0)
\end{vmatrix}
$$

\[=
\begin{vmatrix}
\frac{\partial f_1}{\partial x_1}(0) & \frac{\partial f_1}{\partial x_2}(0) & \cdots & \frac{\partial f_1}{\partial x_m}(0) \\
\frac{\partial f_2}{\partial x_1}(0) & \frac{\partial f_2}{\partial x_2}(0) & \cdots & \frac{\partial f_2}{\partial x_m}(0) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1}(0) & \frac{\partial f_m}{\partial x_2}(0) & \cdots & \frac{\partial f_m}{\partial x_m}(0)
\end{vmatrix}_{m \times m}
\]
Teorema 6.21 Sea $W \subset \mathbb{R}^n$ un conjunto abierto, con $0 \in W$ y sea $f : W \to \mathbb{R}^m$ una aplicación de clase C^r, con $r \geq 1$, con $f(0) = 0$. Supongamos que 0 es un punto regular de f, tenemos

I.- Si $n = m$. Entonces existen conjuntos abiertos $U, V \subset \mathbb{R}^n$, conteniendo a 0, tales que $f : U \to V$ es un difeomorfismo.

II.- Si $n \geq m$. Entonces $\text{rang}(f(0)) = m$, y renumerando las funciones coordenadas (f_1, f_2, \ldots, f_m) de f y renumerando las coordenadas (x_1, x_2, \ldots, x_n) de \mathbb{R}^n, si es necesario, podemos asumir que

$$\det \left(\frac{\partial (f_1, f_2, \ldots, f_m)}{\partial (x_1, x_2, \ldots, x_m)} \right)(0) \neq 0$$

entonces, existen vecindades abiertas U, V de 0 en \mathbb{R}^n, con $U \subset W$ y un difeomorfismo C^r, $h : U \to V$ con $h(0) = 0$ tal que

$$(f \circ h)(x_1, x_2, \ldots, x_m, x_{m+1}, \ldots, x_n) = (x_1, x_2, \ldots, x_m),$$

para $(x_1, \ldots, x_m, \ldots, x_n) \in U$.

III.- Si $n > m$. Luego, $\text{rang}(f(0)) = m$, y renumerando las funciones coordenadas de f y las coordenadas de \mathbb{R}^n, si es necesario, podemos asumir que

$$\det \left(\frac{\partial (f_1, \ldots, f_m)}{\partial (x_1, \ldots, x_m)} \right)(0) \neq 0.$$

Entonces existen un abierto $U \subset \mathbb{R}^{n-m}$, con $0 \in U$, y una aplicación C^r, $g = (g_1, g_2, \ldots, g_m) : U \to \mathbb{R}^m$, con $g(0) = 0$, tal que

$$f(g_1(x_{m+1}, \ldots, x_n), \ldots, g_m(x_{m+1}, \ldots, x_n), x_{m+1}, \ldots, x_n) = 0$$

para (x_{m+1}, \ldots, x_n) en una vecindad de 0 en \mathbb{R}^{n-m}.

IV.- Si $n \leq m$. Entonces $\text{rang}(f(0)) = n$, y renumerando las funciones coordenadas de f y las coordenadas de \mathbb{R}^n, si es necesario, podemos asumir que
\[
\det \left(\frac{\partial (f_1, \ldots, f_n)}{\partial (x_1, \ldots, x_n)} \right) (0) \neq 0.
\]
Entonces existen vecindades abiertas U, V de 0 en \mathbb{R}^m y un difeomorfismo C^r, $h : U \to V$, con $h(0) = 0$ tal que
\[
(h \circ f)(x_1, \ldots, x_m) = (x_1, \ldots, x_m, 0, \ldots, 0).
\]

6.6 Fórmulas de Taylor

La fórmula de Taylor se puede presentar de varias formas, cada una de ella extiende, a su modo, para aplicaciones C^k o sólo k veces diferenciables, una propiedad conocida para aplicaciones C^1 sólo diferenciable. Aquí veremos tres formas, la primera de ellas, llamada fórmula de Taylor con resto infinitesimal nos da, para aplicaciones k veces diferenciables en un punto una aproximación polinomial, que extiende la aproximación lineal dad por la definición de derivada; la segunda, llamada fórmula de Taylor con resto integral, extiende para aplicaciones de clase C^k el Teorema Fundamental del Cálculo, y la última, llamada fórmula de Taylor con resto de Lagrange es una extensión de la desigualdad del Valor Medio.

Notación. Sea $v \in \mathbb{R}^m$, escribimos $v^j = (v, \ldots, v) \in \mathbb{R}^m \times \cdots \times \mathbb{R}^m$ (j factores) para indicar la j–upla de vectores iguales a v.

Si $\varphi : \mathbb{R}^m \times \cdots \times \mathbb{R}^m \to \mathbb{R}^n$ es una aplicación j–lineal, entonces $\varphi(v^j) = \varphi(v, \ldots, v)$.

Teorema 6.22 (Fórmula de Taylor con resto infinitesimal) Sea $U \subset \mathbb{R}^m$ un conjunto abierto y sea $f : U \to \mathbb{R}^n$ una aplicación k veces
diferenciable en U. Si en un punto $x_0 \in U$ existe $D^{k+1}f(x_0)$ entonces

$$f(x_0 + h) = f(x_0) + Df(x_0)h + \frac{1}{2!}D^2f(x_0)h^2 + \cdots + \frac{1}{k!}D^k f(x_0)h^k + \frac{1}{(k+1)!}D^{k+1}f(x_0)h^{k+1} + r(h),$$

donde $\lim_{h \to 0} \frac{r(h)}{||h||^{k+1}} = 0$.

Demostración. Sea $B \subset \mathbb{R}^m$ una bola abierta centrada en 0. Definamos la aplicación $r : B \to \mathbb{R}^n$ por $r(x) = f(x_0 + x) - f(x_0) - Df(x_0)x - \frac{1}{2!}D^2f(x_0)x^2 - \cdots - \frac{1}{k!}D^k f(x_0)x^k - \frac{1}{(k+1)!}D^{k+1}f(x_0)x^{k+1}$. Tenemos que r es k veces diferenciable en B y $k+1$ veces diferenciable en $x = 0$. Además, $D^j r(0) = 0$ para $j = 0, 1, \ldots, k+1$. Queremos probar que $\lim_{x \to 0} \frac{r(x)}{||x||^{k+1}} = 0$. La prueba a seguir es por inducción en k.

Para $k = 0$ es simplemente la definición de diferenciabilidad de f en x_0. Supongamos que vale para k. Por la Desigualdad del Valor Medio se tiene que $||r(x)|| \leq M||x||$, donde $M = \sup\{||Dr(y)|| : y \in [0, x]\}$ (recuerde que $[0, x] = \{tx : 0 \leq t \leq 1\}$ es el segmento de recta uniendo 0 y x). Aplicando la hipótesis de inducción a Dr, se tiene que para todo $\varepsilon > 0$ existe $\delta > 0$, tal que si $||y|| < \delta$ entonces $||Dr(y)|| < \varepsilon ||y||^k$. Por lo tanto, si $||y|| < \delta$, tomando supremo en la desigualdad anterior, tenemos que $M \leq \varepsilon ||x||^k$, y de aquí se sigue que $||r(x)|| \leq \varepsilon ||x||^{k+1}$ para $||x|| < \delta$, lo que completa la prueba.

Corolario 6.23 Sea $U \subset \mathbb{R}^n$ un conjunto abierto y sea $f : U \to \mathbb{R}$ una aplicación k veces diferenciable en $x \in U$. Entonces

$$f(x + h) = f(x) + \sum_{i=1}^{k} \left(\sum_{j_1 + \cdots + j_n = 1}^{i!} \frac{\partial^i f}{\partial_{j_1} \partial x_1 \partial_{j_2} \partial x_2 \cdots \partial_{j_n} \partial x_n} (x) \right) + r(h),$$

donde $\lim_{h \to 0} \frac{r(h)}{||h||^{k+1}} = 0$.

Nota. Si algún $j = 0$ entonces en la expresión anterior no aparece tal derivada parcial.

Teorema 6.24 Sea $\varphi : [0, 1] \rightarrow \mathbb{R}^\ell$ un camino de clase C^{k+1}. Entonces

$$
\varphi(1) = \varphi(0) + \varphi'(0) + \frac{1}{2!} \varphi''(0) + \cdots + \frac{1}{k!} \varphi^{(k)}(0) + \int_0^1 \frac{(1-t)^k}{k!} \varphi^{(k+1)}(t) dt
$$

Demostración. Sea $p : [0, 1] \rightarrow \mathbb{R}^\ell$ el camino definido por $p(t) = \varphi(t) + (1-t)\varphi'(t) + \cdots + \frac{(1-t)^k}{k!} \varphi^{(k)}(t)$. Como φ es de clase C^{k+1} se sigue que p es de clase C^1, y $p'(t) = \frac{(1-t)^k}{k!} \varphi^{(k+1)}(t)$, y el Teorema Fundamental del Cálculo nos da que $p(1) = p(0) + \int_0^1 p'(t) dt$, lo cual al reescribirlo nos resulta la fórmula buscada.

Teorema 6.25 (Fórmula de Taylor con resto de Lagrange). Sea $U \subset \mathbb{R}^m$ un conjunto abierto y sea $f : U \rightarrow \mathbb{R}^n$ una aplicación de clase C^{k+1}. Si el segmento de recta $x_0, x_0 + h$ está contenido en U y si $||D^{k+1} f(x)|| \leq M$ para cada $x \in [x_0, x_0 + h]$, entonces

$$
f(x_0 + h) = f(x_0) + Df(x_0)h + \frac{1}{2!} D^2f(x_0)h^2 + \cdots + \frac{1}{k!} D^k f(x_0)h^k + r(h),
$$

donde $||r(h)|| \leq \frac{M}{(k+1)!} ||h||^{k+1}$.

Demostración. En el teorema anterior, hacemos

$$
r(h) = \int_0^1 \frac{(1-t)^k}{k!} D^{k+1} f(x_0 + th)h^{k+1} dt.
$$

Tenemos entonces que

$$
||r(h)|| \leq \int_0^1 \frac{(1-t)^k}{k!} ||D^{k+1} f(x_0 + th)|| ||h^{k+1}|| dt
$$
\[
\leq \frac{M}{k!} ||h||^{k+1} \int_0^1 (1-t)^k \, dt
\]
\[
= \frac{M}{k!} ||h||^{k+1} \frac{1}{k+1} (1-t)^1_0
\]
\[
= \frac{M}{(k+1)!} ||h||^{k+1}.
\]
y la prueba está completa.

6.7 Valores Extremos de Aplicaciones

Sea \(X \subset \mathbb{R}^n \) un conjunto no vacío, y sea \(x_0 \in X \).

Definición 6.13 Sea \(f : X \to \mathbb{R} \). Decimos que

a) \(x_0 \) es un máximo local para \(f \) si existe una bola abierta \(B \) en \(\mathbb{R}^n \) con centro en \(x_0 \) tal que \(f(x) \leq f(x_0) \) para todo \(x \in B \cap X \).

Además, si \(f(x) < f(x_0) \) para cada \(x \in (X - \{x_0\}) \cap B \), decimos que \(x_0 \) es un máximo local estricto para \(f \).

b) \(x_0 \) es un máximo absoluto para \(f \) si \(f(x) \leq f(x_0) \) para todo \(x \in X \).

Si además se cumple que \(f(x) < f(x_0) \) para todo \(x \in X - \{x_0\} \), decimos \(x_0 \) es un máximo absoluto estricto para \(f \).

Invirtiendo las desigualdades anteriores se definen los conceptos de mínimo local, mínimo local estricto, mínimo absoluto y mínimo absoluto estricto.

En cualquiera de esos caso, decimos que \(x_0 \) es un valor extremo para \(f \) (local, respectivamente, absoluto).

Tenemos el siguiente teorema.
Teorema 6.26 Sea $U \subset \mathbb{R}^n$ un conjunto abierto y sea $f : U \to \mathbb{R}$ una aplicación diferenciable en U. Entonces una condición necesaria para que un punto $x_0 \in U$ sea un extremo para f es que $Df(x_0) = 0$.

Demostración. Supongamos que $x_0 \in U$ es un máximo local para f (los otros casos se prueban de forma análoga). Entonces existe una bola abierta B con centro en x_0, con $B \subset U$ (pues U es abierto) tal que $f(x) \leq f(x_0)$ para todo $x \in B$. Como f es diferenciable en x_0, se tiene que si $x_0 + h \in B$ entonces $f(x_0 + h) = f(x_0) + Df(x_0)h + r(h)$, con $\lim_{h \to 0} ||r(h)||/||h|| = 0$. Por lo tanto, $f(x_0 + h) - f(x_0) = Df(x_0)h + r(h)$. Luego, $Df(x_0)h + r(h) \leq 0$ para todo $h \in B(0, \varepsilon)$, con ε pequeño. Reemplazando h por $-h$ se sigue que $Df(x_0)h = r(h)$. Luego, $Df(x_0) = 0$, como queríamos probar.

Notas. 1.- Geométricamente la conducción $Df(x_0) = 0$ significa que el plano tangente al gráfico de f en el punto $(x_0, f(x_0))$ es paralelo al subespacio $\mathbb{R}^n \times \{0\}$ de $\mathbb{R}^n \times \mathbb{R}$.

2.- La condición $Df(x_0) = 0$ no es suficiente para tener un extremo local en x_0. Por ejemplo, consideremos la aplicación $f : \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x, y) = x^2 - y^2$. Se tiene que $Df(0, 0) = 0$, pero $(0, 0)$ no es máximo ni mínimo local para f.

Definición 6.14 Sea $U \subset \mathbb{R}^n$ un conjunto abierto, y sea $f : U \to \mathbb{R}$
una aplicación diferenciable en U. Si $Df(x_0) = 0$, con $x_0 \in U$, decimos que x_0 es un punto crítico para f. El valor $f(x_0)$ de un punto crítico es llamado un valor crítico para f.

Ejemplo. Sea $f : \mathbb{R}^3 \to \mathbb{R}$ la aplicación definida por $f(x, y, z) = x^4 + y^4 - 2(x^2 + z^2) + y^2$. Tenemos que f es de clase C^∞, y los puntos críticos son dados por las soluciones de las ecuaciones

$$
\frac{\partial f}{\partial x}(x, y, z) = 4x^3 - 4x = 0
$$

$$
\frac{\partial f}{\partial y}(x, y, z) = 2y = 0
$$

$$
\frac{\partial f}{\partial z}(x, y, z) = 4z^3 - 4z^2 = 0.
$$

El conjunto solución de estas ecuaciones es dado por los puntos $(0, 0, 0)$, $(1, 0, 0)$, $(-1, 0, 0)$, $(0, 0, 1)$, $(0, 0, -1)$, $(1, 0, 1)$, $(-1, 0, 1)$, $(1, 0, -1)$, y $(-1, 0, -1)$. Los correspondientes valores críticos son 0, -1, -1, -1, -1, -2, -2, -2, y -2, respectivamente.

Teorema 6.27 Sea $U \subset \mathbb{R}^n$ un conjunto abierto, y sea $f : U \to \mathbb{R}$ una aplicación diferenciable en $x_0 \in U$, con $Df(x_0) = 0$. Entonces una condición necesaria y suficiente para que x_0 sea un máximo local estricto para f es que exista una constante $c > 0$ tal que $D^2f(x_0)(v, v) \leq -c||v||^2$ para todo $v \in \mathbb{R}^n$. Análogamente, x_0 es un mínimo local estricto para f si existe una constante $d > 0$ tal que $D^2f(x_0)(v, v) \geq d||v||^2$ para todo $v \in \mathbb{R}^n$.

Demostración. Desde el Teorema de Taylor, tenemos que $f(x_0 + h) = f(x_0) + \frac{1}{2} D^2f(x_0)(v, v) + r(h)$, donde $\lim_{h \to 0} r(h)/||h||^2 = 0$. Ahora, si $D^2f(x_0)(h, h) \leq -c||h||^2$, se sigue que $f(x_0 + h) - f(x_0) \leq -\frac{c}{2}||h||^2 +$
$r(h)$, luego si $h \neq 0$ se tiene que \(\frac{f(x_0+h)-f(x_0)}{||h||^2} \leq -\frac{\varepsilon}{2} + \frac{r(h)}{||h||^2} \). Elijamos $\alpha > 0$ tal que $\frac{|r(h)||h||^2}{||h||^2} \leq \frac{\varepsilon}{4}$ para todo $h \in B(0,\alpha)$, se sigue entonces que $f(x_0+h) - f(x_0) \leq -c||h||^2$ para todo $h \in B(0,\alpha)$.

Luego, f tiene un máximo local estricto en x_0, lo que completa la prueba.

Nota. Si $Df(x_0), D^2f(x_0), \ldots, D^{2r-1}f(x_0)$ son todas cero, entonces la una prueba análoga a la anterior muestra que una condición suficiente para que x_0 sea un máximo local para f es que exista una constante $c > 0$ tal que $D^{2r}f(x_0)(h,\ldots,h) \leq -c||h||^{2r}$ para todo $h \in \mathbb{R}^n$.

Una condición análoga vale para tener mínimo local.

Ejemplo. En el ejemplo anterior, $f(x, y, z) = x^4 + z^4 - 2(x^2 + z^2) + y^2$ tenemos

\[
\frac{\partial^2 f}{\partial x^2}(x, y, z) = 12x - 4
\]

\[
\frac{\partial^2 f}{\partial y^2}(x, y, z) = 2
\]

\[
\frac{\partial^2 f}{\partial z^2}(x, y, z) = 12z^2 - 4
\]

todas las otras derivadas parciales de segundo orden son nulas. Desde el Teorema anterior, tenemos que un punto crítico es un máximo (resp. un mínimo) local para f si $\frac{\partial^2 f}{\partial x^2}(x, y, z), \frac{\partial^2 f}{\partial y^2}(x, y, z)$ y $\frac{\partial^2 f}{\partial z^2}(x, y, z)$ son estrictamente negativas (resp. estrictamente positivas) en ese punto crítico. Evaluando esas derivadas en los puntos críticos, vemos que ninguno de ellos es un máximo local, mientras que los puntos críticos $(1, 0, 1), (-1, 0, 1), (1, 0, -1)$ y $(-1, 0, -1)$ son mínimos locales estrictos para f, con correspondiente valor crítico -2. De hecho, como f es acotada por abajo, se sigue que -2 es el valor mínimo absoluto para f.
Sea $\mathcal{L}_2(\mathbb{R}^n, \mathbb{R}^m) = \{ \varphi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m : \varphi \text{ es bilineal} \}$. Decimos que $\varphi \in \mathcal{L}_2(\mathbb{R}^n, \mathbb{R}^m)$ es simétrica si $\varphi(u, v) = \varphi(v, u)$ para todo $u, v \in \mathbb{R}^n$. Tenemos que el conjunto $\mathcal{L}_2(\mathbb{R}^n, \mathbb{R}^m)$ de las aplicaciones bilineales de $\mathbb{R}^n \times \mathbb{R}^n$ en \mathbb{R}^m es un espacio vectorial, y si denotamos por $\mathcal{L}_{2,s}(\mathbb{R}^n, \mathbb{R}^m)$ el conjunto de las aplicaciones bilineales simétricas, entonces $\mathcal{L}_{2,s}(\mathbb{R}^n, \mathbb{R}^m)$ es un subespacio vectorial de $\mathcal{L}_2(\mathbb{R}^n, \mathbb{R}^m)$.

Teorema 6.28 Sea $A \in \mathcal{L}_{2,s}(\mathbb{R}^n, \mathbb{R})$. Entonces $a_i, A(v, v) > 0$ para todo $v \in \mathbb{R}^n$, con $v \neq 0$, existe $c > 0$ tal que $A(v, v) \geq c||v||^2$ para todo $v \in \mathbb{R}^n$.

Demostración. Sea $c = \inf\{A(v, v) : ||v||^2 = 1\}$. Tenemos que $c > 0$, y el resto de la prueba es fácil (se deja a cargo del lector).

Si $A \in \mathcal{L}_{2,s}(\mathbb{R}^n, \mathbb{R})$, definimos la aplicación $q : \mathbb{R}^n \to \mathbb{R}$ por $q(x) = A(x, x)$ (q es una forma cuadrática). Decimos que q es no degenerada si $q(x) = 0$ si, y sólo si, $x = 0$. Si $q(x) > 0$ para todo $x \in \mathbb{R}^n$, con $x \neq 0$, decimos que q es positiva definida. Si $-q$ es positiva definida, decimos que q es negativa definida.

Sea $\{v_i : i = 1, \ldots, n\}$ una base de \mathbb{R}^n, podemos definir una matriz $n \times n$, simétrica, $(a_{ij})_{i,j=1,\ldots,n}$, donde $a_{ij} = A(v_i, v_j)$. Los valores propios de esta matriz son reales, y tenemos que $q(x) = A(x, x)$ es no degenerada si, sólo si, todos los valores propios de $(a_{ij})_{i,j=1,\ldots,n}$ son no cero. Si todos los valores propios de $(a_{ij})_{i,j=1,\ldots,n}$ son estrictamente positivos entonces q es positiva definida. Además, podemos encontrar una base \mathcal{E} de \mathbb{R}^n, tal que relativa a \mathcal{E}, q tiene la forma

$$q(x_1, \ldots, x_n) = \sum_{j=1}^{p} x_j^2 - \sum_{i=p+1}^{n} x_i^2$$

para todo $(x_1, \ldots, x_n) \in \mathbb{R}^n$. Ahora aplicamos esto a puntos críticos de aplicaciones.
Teorema 6.29 Sea $U \subset \mathbb{R}^n$ un conjunto abierto y sea $f : U \to \mathbb{R}$.
Supongamos que

1. $f \in C^1$,
2. $x_0 \in U$ es un punto crítico de f,
3. f es dos veces diferenciable en x_0 y $D^2f(x_0)$ es no degenerada.

Entonces, x_0 es un máximo local estricto para f, si, y sólo si, $D^2f(x_0)$ es negativa definida, x_0 es un mínimo local estricto para f si, y sólo si, $D^2f(x_0)$ es positiva definida.

En particular, si $\{v_1, \ldots, v_n\}$ es una base de \mathbb{R}^n, x_0 es un máximo (resp. un mínimo) local estricto para f si, y sólo si, todos los valores propios de la matriz $(D^2f(x_0)(v_i,v_j))_{i,j=1, \ldots, n}$ son estrictamente negativos (resp. estrictamente positivos).

Demostración. (\Rightarrow) Se sigue directamente del teorema anterior.

(\Leftarrow) Supongamos que $D^2f(x_0)$ es no degenerada, pero no negativa definida. Podemos elegir una base $\{v_1, \ldots, v_n\}$ de \mathbb{R}^n, tal que la expansión de Taylor de f alrededor de $x_0 = (x_1, \ldots, x_n)$ tiene la forma

$$f(x_1 + h_1, \ldots, x_n + h_n) = f(x_1, \ldots, x_n) + \frac{1}{2} \left(\sum_{i=1}^{p} h_i^2 - \sum_{i=p+1}^{n} h_i^2 \right) + r(h),$$

donde $h = (h_1, \ldots, h_n)$ y $\lim_{h\to 0} \frac{r(h)}{||h||^2} = 0$, y p es estrictamente positivo.

Denotemos por \mathbb{R}^p el subespacio generado por las primeras p coordenadas de \mathbb{R}^n. Si restringimos f a $U \cap (x_0 + \mathbb{R}^p)$, vemos que x_0 no puede ser un máximo local estricto para f. Análogamente, si $D^2f(x_0)$ es no positiva, x_0 no puede ser un mínimo local estricto para f. Lo que concluye la prueba.

Ejemplos.
6.8 Multiplicadores de Lagrange

En algunos problemas se pide minimizar una función sujeta a ciertas restricciones.

Teorema 6.30 (Multiplicadores de Lagrange) Sea $U \subset \mathbb{R}^n$ un conjunto abierto y sean $f, g : U \to \mathbb{R}$ aplicaciones de clase C^r ($r \geq 1$). Sea $x_0 \in U$, con $g(x_0) = c_0$, sea $S = g^{-1}(c_0)$ el conjunto de nivel de g con valor c_0. Supongamos que $\nabla g(x_0) \neq 0$ (en particular, S es una superficie). Si $f|S$ tiene un máximo o un mínimo local en x_0, entonces existe un número real λ tal que

$$\nabla f(x_0) = \lambda \nabla g(x_0).$$

Demostración. Como $\nabla g(x_0) \neq 0$, sin pérdida de generalidad, podemos suponer que $\frac{\partial g}{\partial x_n}(x_0) \neq 0$ y que $c_0 = 0$. Entonces por el Teorema de la Función Implicita, existe una función de clase C^r, h tal que $g(x_1, \ldots, x_{n-1}, h(x_1, \ldots, x_{n-1})) = 0$, para todo (x_1, \ldots, x_{n-1}) en un conjunto abierto $V \subset \mathbb{R}^{n-1}$. Definamos una función k como sigue $k(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, h(x_1, \ldots, x_{n-1}))$. Queremos maximizar k. Si k tiene un máximo o un mínimo local en un punto, entonces

$$\frac{\partial k}{\partial x_i} = \frac{\partial f}{\partial x_i} + \frac{\partial f}{\partial x_n} \frac{\partial h}{\partial x_i} = 0.$$

Pero, $\frac{\partial g}{\partial x_i} + \frac{\partial g}{\partial x_n} \frac{\partial h}{\partial x_i} = 0$, luego

$$\frac{\partial f}{\partial x_i} = -\frac{\partial f}{\partial x_n} \frac{\partial h}{\partial x_i} = -\frac{\partial f}{\partial x_n} \cdot \left(\frac{\partial g}{\partial x_i} / \frac{\partial g}{\partial x_n} \right) = \left(\frac{\partial f}{\partial x_n} / \frac{\partial g}{\partial x_n} \right) \frac{\partial g}{\partial x_i},$$

tomando $\lambda = \frac{\partial f}{\partial x_n} / \frac{\partial g}{\partial x_n}$, se sigue que $\nabla f(x_0) = \lambda \nabla g(x_0)$.

Nota. Si la superficie S está definida por varias restricciones

\[
g_1(x_1, \ldots, x_n) = c_1 \\
g_2(x_1, \ldots, x_n) = c_2 \\
\vdots \\
g_k(x_1, \ldots, x_n) = c_k
\]
y f posee un máximo o un mínimo en $x_0 \in S$. Si $\text{grad} g_1(x_0), \ldots, \text{grad} g_k(x_0)$ son linealmente independientes, entonces existen constantes reales $\lambda_1, \ldots, \lambda_k$, tales que

\[
\text{grad} f(x_0) = \lambda_1 \text{grad} g_1(x_0) + \cdots + \lambda_k \text{grad} g_k(x_0).
\]

La demostración se sigue directamente del Teorema de la Función Implícita, considerando la función $g = (g_1, \ldots, g_k)$. Los detalles quedan a cargo del lector.

Ejemplos.

6.9 Ejercicios

En los problemas asuma que las funciones tienen tanta clase de diferenciabilidad como sea necesaria, salvo mención explícita.

1. Suponga que $f : \mathbb{R}^2 \to \mathbb{R}$ es diferenciable. Defina $F : \mathbb{R}^2 \to \mathbb{R}$ por $F(x, y) = f(x, xy)$. Calcule $\frac{\partial F(x, y)}{\partial x \partial y}$.

2. Si $f : \mathbb{R}^3 \to \mathbb{R}$ y $g : \mathbb{R}^2 \to \mathbb{R}$. Defina $F(x, y) = f(x, y, g(x, y))$,

Suponga que f y g son diferenciables, y exprese las derivadas parciales de primer y segundo orden de F en término de aquellas de f y de g.
3. Sea \(F = g \circ f \), donde \(f(x, y) = (xy, x^2y) \) y \(g(s, t) = (s + t, s^2 - t^2) \). Calcule \(JF(s, t) = \frac{\partial(F_1, F_2)}{\partial(s, t)} \), es decir, la matriz jacobiana de \(F = (F_1, F_2) \) con respecto a las variables \((s, t)\).

4. Sea \(F : U \subset \mathbb{R}^3 \to \mathbb{R}^3 \) (\(U \) abierto) una aplicación de clase \(C^r \) \((r \geq 1)\). Escribiendo \(F(x, y, z) = (f_1(x, y, z), f_2(x, y, z), f_3(x, y, z)) \), tenemos que su matriz jacobiana es

\[
JF(x, y, z) = \begin{pmatrix}
\frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\
\frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \\
\frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial z}
\end{pmatrix}.
\]

Se define la divergencia de \(F \), denotada por \(\text{div} \, F \), como

\[
\text{div} \, F = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}
\]

(este concepto se extiende mode natural a \(\mathbb{R}^n \)), y el rotacional de \(F \), denotado por \(\text{rot} \, F \) o bien por \(\nabla \times F \), por

\[
\text{rot} \, F = \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}, \frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x}, \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right).
\]

Note que \(\text{div} \, F \) no es otra cosa que la la traza (suma de los elementos de la diagonal) de la matriz jacobiana, y las componentes de \(\text{rot} \, F \) son las diferencias de los elementos situados simétricamente respecto de la diagonal, y un cambio de signo.

Sea \(U \subset \mathbb{R}^3 \) un conjunto abierto. Sea \(F : U \to \mathbb{R}^3 \) y \(\phi : U \to \mathbb{R} \) de clase \(C^r \) \((r \text{ suficientemente grande})\).
(a) Si \(F = \text{grad} \phi = (\partial \phi / \partial x, \partial \phi / \partial y, \partial \phi / \partial z) \). Pruebe que
\[
\text{div} F = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}.
\]
La expresión del segundo miembro es llamada \textit{Laplaciano} de \(\phi \), y se acostumbra a denotarlo por \(\nabla^2 \phi \). Luego la divergencia de un gradiente \(\text{grad} \phi \) es el laplaciano \(\nabla^2 \phi \), es decir,
\[
\text{div} (\text{grad} \phi) = \nabla^2 \phi.
\]
A seguir pruebe que:

(b) \(\text{rot} (\text{grad} \phi) = 0 \)

c) \(\text{div} (\text{rot} F) = 0 \).

d) \(\text{div}(aF + bG) = a \text{div} F + b \text{div} G \) y \(\text{rot}(aF + bG) = a \text{rot} F + b \text{rot} G \),

e) \(\text{div}(\phi F) = \phi \text{div} F + \langle \text{grad} \phi, F \rangle \) y \(\text{rot}(\phi F) = \phi \text{rot} F + \text{grad} \phi \times F \),

(f) Si \(U = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \neq (0, 0) \} \), y
\[
F(x, y, z) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}, z \right),
\]
entonces \(\text{div} F = 0 \) y \(\text{rot} F = 0 \) en todo \(U \).

5. Suponga que \(f(x, y) = \phi(x - cy) + \psi(x + cy) \), donde \(\phi, \psi : \mathbb{R} \to \mathbb{R} \)
son aplicaciones de clase \(C^k \) (\(k \geq 2 \)) y \(c \) es una constante. Pruebe que \(f \) satisface la ecuación
\[
\frac{\partial^2 f}{\partial y^2} = c^2 \frac{\partial^2 f}{\partial x^2}.
\]

6. Sea \(\rho(x_1, x_2, x_3) = \sqrt{x_1^2 + x_2^2 + x_3^2} \) y definamos \(f \) por
\[
f(x_1, x_2, x_3, x_4) = \frac{\phi(\rho(x_1, x_2, x_3) - cx_4) + \psi(\rho(x_1, x_2, x_3) + cx_4)}{\rho(x_1, x_2, x_3)}
\]
con \((x_1, x_2, x_3) \neq (0, 0, 0)\). Muestre que
\[
\frac{\partial^2 f}{\partial x_4^2} = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \frac{\partial^2 f}{\partial x_3^2} \quad \text{(ecuación de la onda)}
\]
7. Pruebe que \(g(s, t) = (\cosh(s) \cos(t), \sinh(s) \sin(t)) \) tiene inversa local. Encuentre un dominio sobre el cual \(g^{-1} \) está definida.

8. Sea \(g : [0, \infty[\to \mathbb{R} \) dada por \(g(t) = t^4 + 2t^2 \). Pruebe que \(g^{-1} \) existe y encuentrela explícitamente. ¿Es \(g^{-1} \) diferenciable?

9. Defina \(g : \mathbb{R}^2 \to \mathbb{R}^2 \) por \(g(s, t) = (e^s \cos(t), e^s \sin(t)) \).
 (a) Pruebe que \(g \) satisface las condiciones del Teorema de la Función Inversa.
 (b) Sea \(\Delta = \{(s, t) : 0 < t < 2\pi, s \in \mathbb{R}\} \). Demuestre que \(g/\Delta \) es inyectiva. Encuentre \(g(\Delta) \) y \(g^{-1} \).
 (c) ¿Existen otros dominios sobre los cuales \(g \) es inyectiva? Si responde afirmativamente, determine esos dominios. Si su respuesta es negativa, justifique.

10. Sea \(g(s, t) = (s + f(t), t + f(s)) \), donde \(f \in C^1 \) y \(|f'(u)| \leq c < 1 \), para todo \(u \in \mathbb{R} \).
 (a) Pruebe que \(g(\mathbb{R}^2) = \mathbb{R}^2 \), y que \(g \) es inyectiva.
 (b) ¿Es posible aplicar el Teorema de la Función Inversa a \(g \)? Justifique.

11. Calcular las derivadas parciales de las aplicaciones definidas a seguir, en los puntos donde existan,
 (a) \(f(x, y, z) = x^{y^z} \);
 (b) \(f(x, y, z) = \log(x^2 + 2y^2 - 3z^2) \).
12. Sea \(\nu(r, t) = t^n e^{-r^2/4} \). Calcular el valor de \(n \) de nodo que \(\nu \) satisfaga la ecuación
\[
\frac{\partial \nu}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \nu}{\partial r} \right).
\]

13. Sean \(z = u(x, y)e^{ax+by} \) y \(\frac{\partial u}{\partial x \partial y} = 0 \). Encontrar los valores de las constantes \(a \) y \(b \) tales que
\[
\frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} + z = 0.
\]

14. Calcular las derivadas direccionales en los puntos y direcciones dadas.

(a) \(f(x, y, z) = x^2 + 2y^2 + 3z^2 \) en \((1, 1, 0) \) en la dirección de \(e_1 - e_2 + 2e_3 \);

(b) \(f(x, y, z) = (x/y)^2 \) en \((1, 1, 1) \) en la dirección de \(2e_1 + e_2 - e_3 \).

15. Suponga que \(F(x, \phi(x)) = 0 \) y que \(\frac{\partial F}{\partial y}(x, \phi(x)) \neq 0 \) para cada \(x \in \mathbb{R} \). Calcule \(\phi' \) y \(\phi'' \).

16. Sea \(F(\phi(y, z), y, z) = 0 \). Suponga que \(\frac{\partial F}{\partial x}(\phi(y, z), y, z) \neq 0 \) para cada \((y, z) \in \mathbb{R}^2 \). Encuentre \(\frac{\partial^2 \phi}{\partial x^2} \).

17. Sean \(\phi(x_1, x_2, x_3, x_4) = x_2^2 + x_4^2 - 2x_1x_3 \) y \(\psi(x_1, x_2, x_3, x_4) = x_2^3 + x_1^3 + x_3^3 \). Defina \(F(x_1, x_2, x_3, x_4) = (\phi(x_1, x_2, x_3, x_4), \psi(x_1, x_2, x_3, x_4)) \) y sea \(x_0 = (1, -1, 1, 1) \). Demuestre que \(F \) satisface las hipótesis del Teorema de la Función Implicita. ¿Qué variable(s) puede(n) despejar(se)? Calcule la derivada de la(s) función(es) dada(s) por el Teorema de la Función Implicita.

18. Sean \(f, g : U \subset \mathbb{R}^n \rightarrow \mathbb{R} \) \((U \ \text{abierto}) \) aplicaciones diferenciables. Probar
(a) $\text{grad} f = 0$ si f es constante en U;
(b) $\text{grad}(f + g) = \text{grad} f + \text{grad} g$;
(c) $\text{grad}(cf) = c \text{grad} f$, donde $c \in \mathbb{R}$ es una constante;
(d) $\text{grad}(fg) = f \text{grad} g + g \text{grad} f$;
(e) $\text{grad}(f/g) = (g \text{grad} f - f \text{grad} g)/g^2$, en los puntos donde $g \neq 0$.

19. La aplicación exponencial de matrices $\exp : M(n \times n, \mathbb{R}) \to M(n \times n, \mathbb{R})$ es definida por $\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}$. Pruebe que \exp es una aplicación de clase C^∞, y que $D\exp(0)$ es un isomorfismo. Concluya que existe una función C^∞, que podemos llamar logaritmo de matrices, $\log : U \to M(n \times n, \mathbb{R})$, donde U es una vecindad abierta de la matriz identidad I en $GL(n, \mathbb{R})$, tal que $\exp(\log(X)) = X$, para todo $X \in U$.

(a) Calcule $\exp(I)$;
(b) si $A \in M(n \times n, \mathbb{R})$ tiene la propiedad que $A^k = 0$ para algún $k \geq 1$. Calcule $\exp(A)$;
(c) Si $A \in M(2 \times 2, \mathbb{R})$ tiene la forma

$$A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}.$$

Calcule $\exp(A)$.
(d) Calcule $D\log(I)$.

20. Sea $g : \mathbb{R}^2 \to \mathbb{R}^4$ dada por $g(x, y) = (g_1(x, y), g_2(x, y), g_3(x, y), g_4(x, y))$, donde $g_i : \mathbb{R}^2 \to \mathbb{R}$ son dadas por

$$g_1(x, y) = (r \cos(y) + a) \cos(x), \quad g_2(x, y) = (r \cos(y) + a) \sen(x),$$
$$g_3(x, y) = r \sen(y) \cos(x/2), \quad g_4(x, y) = r \sen(y) \sen(x/2)).$$
Pruebe que g es una inmersión C^∞.

21. Defina $f : \mathbb{R} \to \mathbb{R}$ dada por:

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{si } x > 0 \\ 0 & \text{si } x \leq 0. \end{cases}$$

(a) Pruebe que $f \in C^\infty$;

(b) pruebe que $g(x) = f(x - a)f(b - x)$ es de clase C^∞, positiva sobre $]a, b[$, y es igual a cero en fuera del intervalo $]a, b[$;

(c) pruebe que

$$h(x) = \frac{\int_{-\infty}^{x} g(t)dt}{\int_{-\infty}^{\infty} g(u)du}$$

es de clase C^∞ y satisface $h(x) = 0$ para $x \leq a$, $h(x) = 1$ para $x > b$, y $0 < h(x) < 1$ para $x \in]a, b[$, y es estrictamente creciente en ese intervalo.

22. Pruebe que $f : \mathbb{R} \to \mathbb{R}^2$ dada por

$$f(x) = \left(\frac{e^x + e^{-x}}{2}, \frac{e^x - e^{-x}}{2}\right)$$

es una inmersión inyectiva. ¿Cuál es la imagen de f?

23. Si $f : \mathbb{R}^3 \to \mathbb{R}$ es dada por $f(x_1, x_2, x_3) = \alpha(r)e^{x_3}$ con $r = \sqrt{x_1^2 + x_2^2}$, donde α es una función C^∞, igual a 1 en una vecindad de 0, y $\alpha(1) = 0$, $\alpha'(1) \neq 0$. Pruebe que f es una submersión C^∞. Dibuje los conjuntos $f^{-1}(c)$ para diferentes valores de c.

24. Sea $f : [0, 1[\times \mathbb{R} \to \mathbb{R}^3$ dada por $f(s, t) = \gamma(t) + (s - \frac{1}{2})\delta(t)$, donde

$$\begin{cases}
\gamma(t) = (\cos(t), \sin(t), 0) \\
\delta(t) = \cos(\frac{t}{2})\gamma(t) + \sin(\frac{t}{2})(0, 0, 1).
\end{cases}$$

Pruebe que f es una inmersión C^∞. ¿Cuál es la imagen de f?
25. Sea \(f :]-1, +\infty[\to \mathbb{R}^2 \) dada por \(f(t) = (t^3 - t, t^2) \). Pruebe que \(f \)

es una inmersión \(C^\infty \), la cual es una biyección de \(]-1, +\infty[\) sobre su imagen, pero \(f^{-1} \) no es continua en todas partes. Encuentre el (los) punto(s) de discontinuidad de \(f^{-1} \).

26. Considere funciones diferenciables \(f, g, h : \mathbb{R} \to \mathbb{R} \) y defina \(F : \mathbb{R}^2 \to \mathbb{R}^2 \) por \(F(x, y) = (f(x)h(y), g(y)) \). Suponga que \(f \) y \(g \) son difeomorfismos de \(\mathbb{R} \) sobre \(\mathbb{R} \). Pruebe que \(F \) es un difeomorfismo si y sólo si \(0 \notin h(\mathbb{R}) \). Construya ejemplos específicos (es decir, dar explícitamente \(f, g \) y \(h \)).

27. Sea \(f : \mathbb{R}^2 \to \mathbb{R} \) definida por:

\[
\begin{cases}
 (x^2 + y^2) \sin \left(\frac{1}{\sqrt{x^2 + y^2}} \right) & \text{si} \ (x, y) \neq (0, 0) \\
 0 & \text{si} \ (x, y) = (0, 0).
\end{cases}
\]

(a) Demostrar que \(f \) es diferenciable en todas partes.

(b) Demostrar que las derivadas parciales de \(f \) son funciones acotadas, pero discontinuas en \((0, 0)\).

28. En \(\mathbb{R}^3 \) considere las coordenadas \((\alpha, \beta, \varphi)\) definidas por las fórmulas:

\[
\begin{align*}
 x &= \frac{c \sin(\alpha) \cos(\varphi)}{\cosh(\beta) - \cos(\alpha)}, \\
 y &= \frac{c \sin(\alpha) \sin(\varphi)}{\cosh(\beta) - \cos(\alpha)}, \\
 z &= \frac{c \sinh(\beta)}{\cosh(\beta) - \cos(\alpha)},
\end{align*}
\]

donde \(c > 0 \) es una constante. Determine un abierto \(U \subset \mathbb{R}^3 \) donde estas coordenadas están bien definidas.
29. Suponga que \(F(u,v,x,y,z) \) y \(G(u,v,x,y,z) \) son funciones de clase \(C^r \) \((r \geq 1)\) definidas en un conjunto abierto \(U \subset \mathbb{R}^5 \). Suponga además que \(u \) y \(v \) son funciones de \(x, y, z \), las cuales satisfacen las ecuaciones
\[
\begin{align*}
F(u,v,x,y,z) &= 0 \\
G(u,v,x,y,z) &= 0.
\end{align*}
\]
Calcular las derivadas parciales de \(u \) y de \(v \) respecto de las variables \(x, y, y z \).

30. Sea \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) una aplicación diferenciable, con \(f(0) = 0 \). Si \(Df(0) \) no tiene valor propio 1, demuestre que existe un abierto \(V \subset \mathbb{R}^n \) con \(0 \in V \) tal que \(f(x) \neq x \) para todo \(x \in V - \{0\} \).

31. Sea \(U \subset \mathbb{R}^m \) un conjunto abierto, y sea \(f : U \rightarrow \mathbb{R}^n \) una aplicación que satisface \(||f(x) - f(y)|| \leq \lambda ||x - y|| \) para cada \(x, y \in U \), donde \(\lambda \) es una constante. Sean \(a \in U \) y \(g : V \subset \mathbb{R}^n \rightarrow \mathbb{R}^{\ell} \) una aplicación diferenciable \((V \text{ abierto})\), con \(f(U) \subset V \) y \(b = f(a) \). Si \(Dg(b) = 0 \), demuestre que \(g \circ f : U \rightarrow \mathbb{R}^{\ell} \) es diferenciable en \(a \) y que \(D(g \circ f)(a) = 0 \).

32. Sean \(V = \mathbb{R}^3 - \{(x,y,z) : y = 0, x \geq 0\} \) y \(f : V \rightarrow \mathbb{R} \) una aplicación diferenciable. Exprese \(\text{grad} f \) en términos de las coordenadas cilíndricas.

33. (Método para construir difeomorfismos). Sea \(g : [0, +\infty[\rightarrow \mathbb{R} \) continua, con \(g(t) > 0 \) para todo \(t \geq 0 \), y sea \(U = \{(x,y) \in \mathbb{R}^2 : 0 < x < y\} \). Defina \(f : U \rightarrow \mathbb{R}^2 \) por
\[
f(x,y) = \left(\int_0^{x+y} g(t)dt, \int_0^{y-x} g(t)dt \right).
\]
Pruebe que f es un difeomorfismo C^∞ sobre un abierto de \mathbb{R}^2. Construya ejemplos concretos.

34. Sea $f: \mathbb{R} \rightarrow \mathbb{R}^2$ dada por

$$f(t) = \begin{cases} (t^2, t^2) & \text{para } t \geq 0 \\ (t^2, -t^2) & \text{para } t \leq 0. \end{cases}$$

Pruebe que f es de clase C^1, pero no de clase C^2.

35. Pruebe que $f : \mathbb{R} \rightarrow \mathbb{R}^2$ dada por $f(t) = (t^3 - 4t, t^2 - 4)$ es una inmersión de clase C^∞ no inyectiva. Dibuje la imagen de f.

36. Sea $f(t) = (t^3, t^2)$, para todo $t \in \mathbb{R}$. ¿f es una inmersión? (justifique su respuesta).

37. Sea $U = [0, 2\pi] \times [0, 2\pi]$, y sea $f: U \rightarrow \mathbb{R}^3$ la función definida por

$$f(u, v) = ((r \cos(u) + a) \cos(v), (r \cos(u) + a) \sin(v), r \sin(u)),$$

con $0 < a < r$. Pruebe que f es una inmersión inyectiva. ¿Cuál es la imagen de f?

38. Dadas $f, g : J \rightarrow \mathbb{R}$, donde $J \subset \mathbb{R}$ es un intervalo abierto. Suponga que $f(v) > 0$ para todo $v \in J$. Sea $F : \mathbb{R} \times J \rightarrow \mathbb{R}^3$ dada por $F(u, v) = (f(v) \cos(u), f(v) \sin(u), g(v))$. Pruebe que si f, g son de clase C^k, $k \geq 1$, y $g'(v) \neq 0$ entonces F es una inmersión. Encuentre un dominio sobre el cual F es inyectiva. Dibuje la imagen de F, y dé algunos ejemplos de funciones f y g que satisfacen las condiciones anteriores. Grafique en cada caso la imagen de F. Por ejemplo, considere $f(v) = a \cosh(v)$ y $g(v) = av$ con $a > 0$.
39. Defina \(F : \mathbb{R}^2 \to \mathbb{R}^3 \) por \(F(u, v) = (u, v, u^3 - 3v^2u) \). Pruebe que \(F \) es una inmersión inyectiva de clase \(C^\infty \). Dibuje la imagen de \(F \).

40. Sea \(\Pi : \mathbb{R}^2 \to \mathbb{R}^3 \) dada por
\[
\Pi(u, v) = \left(\frac{4u}{u^2 + v^2 + 4}, \frac{4v}{u^2 + v^2 + 4}, \frac{2(u^2 + v^2) - 1}{u^2 + v^2 + 4} \right).
\]
Pruebe que \(\Pi \) es una inmersión de clase \(C^\infty \).

41. Sea \(F : \mathbb{R} \to \mathbb{R} \) definida por
\[
f(x) = \begin{cases}
\frac{x}{2} + x^2 \sin \left(\frac{1}{x} \right) & \text{si } x \neq 0 \\
0 & \text{si } x = 0.
\end{cases}
\]
Pruebe que \(f \) es diferenciable y que \(f'(0) \neq 0 \), pero no existe ningún intervalo abierto \(I \) conteniendo a \(0 \) sobre el cual \(f \) tiene inversa. ¿Porqué esto no contradice el Teorema de la Función Inversa?

42. En \(\mathbb{R}^2 \) use la métrica (distancia) dada por la norma \(||(x, y)||_s = |x| + |y| \). Sea \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) dada por \(f(x, y) = (x + y, xy) \). Calcule \(Df(a_1, a_2) \). ¿Cambia el resultado si usamos la norma \(||(x, y)|| = \sqrt{x^2 + y^2} \)?

43. Calcule las coordenadas del vector gradiente \(\nabla f(x, y) \), para \(f : \mathbb{R}^2 \to \mathbb{R} \) diferenciable, en una base arbitraria \(V = \{v_1, v_2\} \) de \(\mathbb{R}^2 \).
44. Pruebe que para la aplicación f definida por

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x, y) \neq (0, 0) \\ 0 & \text{si } (x, y) = (0, 0) \end{cases}$$

existen las derivadas parciales $\frac{\partial f}{\partial x}(0, 0)$ y $\frac{\partial f}{\partial y}(0, 0)$, pero f no es diferenciable en $(0, 0)$. ¿f es continua en $(0, 0)$?

45. Sea $f : \mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } x^2 + y^2 \neq (0, 0) \\ 0 & \text{si } x = y = 0 \end{cases}.$$

Pruebe que f no es continua en $(0, 0)$, y que $\frac{\partial f}{\partial x}(0, 0)$ y $\frac{\partial f}{\partial y}(0, 0)$ existen. ¿f es diferenciable en $(0, 0)$? (Justifique sin hacer cálculos).

46. Pruebe que $f : \mathbb{R}^n \to \mathbb{R}$ dada por

$$f(x) = \|x\| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

diferenciable, de hecho f es de clase C^∞ en $\mathbb{R}^n - \{0\}$.

47. Sea $f : \mathbb{R}^3 \to \mathbb{R}^2$ definida por $f(x, y, z) = (xye^z + x^2 \cos y, x^4)$. ¿Es posible aplicar el Teorema de la Función Implícita a f?, ¿es f una submersión?

48. Encuentre la derivada direccional de la aplicación $f : \mathbb{R}^3 \to \mathbb{R}$ dada por $f(x, y, z) = x^2 + y^4 + z^2$ en el punto $(1, 1, 1)$ y en la dirección $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right)$.

49. Sea $f : \mathbb{R} \to \mathbb{R}^3$ y $g : \mathbb{R}^3 \to \mathbb{R}^2$ dadas por $f(t) = (\cos t, e^t \cos t, t^4)$ y $g(x_1, x_2, x_3) = (e^{x_1 x_2}, \cos (x_1^2 + x_2))$. Calcule $D^2(g \circ f)(0)$.
50. Aplique el Teorema de la Función Implícita a las siguientes funciones,

(a) $f(x, y) = x^2 \cos(y) + \sin(y)$ en $(0, 0)$.

(b) $f(x, y, z) = \sqrt{x^2 + y^2 + z^2} - \sin((x+y+z)\pi) - \sqrt{3}$ en $(1, 1, 1)$.

Justifique su respuesta.

51. Considere el sistema de ecuaciones

\[
\begin{align*}
(f(x, y))^3 + x(g(x, y))^2 + y &= 0 \\
(g(x, y))^3 + yg(x, y) + (f(x, y))^2 - x &= 0
\end{align*}
\]

en las incógnitas $f(x, y)$ y $g(x, y)$. Aplique el Teorema de la Función Implícita para probar que el sistema de ecuaciones tiene solución.

52. Calcule $\frac{\partial^{m+n} u}{\partial x^m \partial y^n}(x, y)$, donde $u(x, y) = \sin(\alpha x + \beta y + \gamma)$.

53. Sea $u(x, y) = e^{\alpha x} \cos(\beta y)$. Calcular $d^n u(x, y)$.

54. Construya una función $f : \mathbb{R} \to \mathbb{R}$ de clase C^m, pero no de clase C^{m+1}.

Observación. Si $f : \mathbb{R} \to \mathbb{R}$ es continua. Entonces la aplicación $h_1(x) = \int_0^x f(s)ds$ es diferenciable (Teorema Fundamental del Cálculo) y $Dh_1(x) = f(x)$. Además, como f es continua se tiene que $h_1 \in C^1$.

Indicación: Use lo anterior para construir los ejemplos deseados.

55. Pruebe que $f : [0, 1] \to \mathbb{R}$ dado por $f(t) = \tan\left(\frac{4t}{\pi}\right)$ es un difeomorfismo C^∞.
56. Sea \(\exp(x) = e^x \). Considere la función \(\phi : \mathbb{R} \to \mathbb{R} \), dada por

\[
\phi(t) = \begin{cases}
\exp\left(\frac{-1}{(t-a)(t-b)}\right) & \text{si } a < t < b \\
0 & \text{otro caso}
\end{cases}
\]

(a) Pruebe que \(\phi \in C^\infty \) y que \(\phi^{(k)}(a) = \phi^{(k)}(b) = 0 \), para todo \(k \in \mathbb{N} \).

(b) Defina \(\theta : \mathbb{R} \to \mathbb{R} \) por

\[
\theta(t) = \frac{\int_{-\infty}^{t} \phi(x)dx}{\int_{-\infty}^{\infty} \phi(s)ds}
\]

Pruebe que \(\theta \in C^\infty \) y que \(\theta(t) = 0 \) para \(t \leq a \) y \(\theta(t) = 1 \) para \(t \geq b \).

(c) Defina \(\eta : \mathbb{R} \to \mathbb{R} \) por \(\eta(t) = 1 - \theta(t) \). Estudie el gráfico de \(\eta \) cuando \(a = 1 \) y \(b = (1 + \delta)^2 \), \(\delta > 0 \).

(d) Defina \(\psi : \mathbb{R}^n \to \mathbb{R} \) dada por \(\psi(x) = \eta(\|x\|^2) \). Pruebe que \(\psi \in C^\infty \), y que \(\psi(x) = 0 \) cuando \(\|x\|^2 \geq (1 + \delta)^2 \) y \(\psi(x) = 1 \) para \(\|x\| < 1 \).

Dibuje el gráfico de \(\psi \). (tal función \(\psi \) es llamada una “función cototo”).

57. Sea \(f : \mathbb{R} \to \mathbb{R} \), una aplicación \(C^1 \), tal que \(|Df(x)| \leq k < 1 \) para todo \(x \in \mathbb{R} \). Defina \(\varphi : \mathbb{R}^2 \to \mathbb{R}^2 \), \(\varphi(x, y) = (x + f(x), y + f(y)) \).

Pruebe que \(\varphi \) es un difeomorfismo.

58. Sea \(B(r) = \{ x \in \mathbb{R}^n : \|x\| < r \} \), donde \(\|x\| = (\sum_{i=1}^{n} x_i^2)^{1/2} \).

Pruebe que la aplicación \(f : B(r) \to \mathbb{R}^n \) dada por

\[
f(x) = \frac{rx}{\sqrt{r^2 - \|x\|}}
\]

es un difeomorfismo \(C^\infty \).
Indicación. $f^{-1}(y) = \frac{ry}{\sqrt{r^2 + ||y||}}$.

59. Pruebe que,

(a) Si f y g son inmersiones entonces $f \times g$ también lo es.

(b) Si f y g son inmersiones, entonces $g \circ f$ es una inmersión.

c) Vale lo anterior si cambiamos inmersión por submersión?

d) Si f es inmersión y g es submersión (o vice versa) ¿Qué podemos decir acerca de $f \times g$ y de $f \circ g$?

60. Considere la función $f : M(n \times n, \mathbb{R}) \rightarrow M(n \times n, \mathbb{R})$ definida por $f(X) = X_k$, $k \geq 1$. Demuestre que f es de clase C^1.

61. Use el Teorema de la Función Inversa para demostrar que f es un difeomorfismo local alrededor de la matriz identidad. ¿Es f un difeomorfismo global? Justifique su respuesta.

62. Calcule las derivadas $\phi'(x)$ y $\phi''(x)$, donde la función $y = \phi(x)$ satisface la ecuación $\sin(y) + x^2 = 0$.

63. ¿Es posible aplicar el Teorema de la Función Implícita a la función $f(x, y) = x^2 \cos(y) + \sin(y)$ en el punto $(0,0)$? ¿Es f submersión en el punto $(0,0)$?

64. Sea $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ definida por

$$f(x, y) = \begin{cases}
(x^2 + y^2)^\alpha \sin\left(\frac{1}{x^2 + y^2}\right) & (x, y) \neq (0, 0) \\
0 & (x, y) = (0, 0)
\end{cases}$$

Determine los valores de α para los cuales f es diferenciable en todo \mathbb{R}^2.
65. Calcular la derivada direccional de \(f(x, y) = x^2 + 4y^2 + e^x \cos(y) \) en el punto \((0, 0)\), en la dirección que forma un ángulo de \(30^\circ\) con el eje \(x\).

66. Sea \(f : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) dada por

\[
f(r, \theta, \phi) = (r \sen(\phi) \cos(\theta), r \sen(\phi) \sen(\theta), r \cos(\phi)),
\]

donde \(r > 0\). Demuestre que \(f\) es un difeomorfismo local de clase \(C^\infty\), y encuentre un abierto \(U \subset \mathbb{R}^3\) donde \(f/U : U \rightarrow f(U)\) es un difeomorfismo (describa \(U\) explícitamente). Calcule \(Df^{-1}(u, v, w)\) donde \((u, v, w) \in f(U)\).

67. Si \(u = f(x, y)\) es de clase \(C^r\) \((r \geq 2)\). Expresar \(\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\) en términos de coordenadas polares.

68. ¿Para qué valores de \(x\) e \(y\) puede resolverse la ecuación

\[
e^{x^2+y^2+z^2} - \cos(x^2 + y^2 + z^2) = 0
\]

para \(z\)?

69. Hallar la derivada direccional de las funciones indicadas en punto en cuestión y en la dirección dada:

1.- \(f(x, y, z) = e^x \cos(yz)\) en \(p_0 = (0, 0, 0)\) y \(v = (3, 3, -3)\).

2.- \(f(x, y) = (x^2 - y^2)/(x^2 + y^2)\) en \(p_0 = (1, 1)\) y \(v = (1, -1)\).

3.- \(f(x, y) = \exp(-x^2 - y^2)\) en \(p_0 = (1, 1)\) y \(v = (1/\sqrt{2}, 1/\sqrt{2})\).

70. Demuestre que la función \(f : \mathbb{R}^2 \rightarrow \mathbb{R}\) dada por \(f(x, y) = (x^2 + y^2) \sen(1/(x^2+y^2))\) admite derivadas parciales en cada punto, pero ninguna de ellas es continua en \((0, 0)\).
71. Sea $f : \mathbb{R}^2 \to \mathbb{R}$ la aplicación definida por

$$f(x, y) = \begin{cases}
 x^2 \arctan(y/x) - y^2 \arctan(x/y) & \text{si } xy \neq 0 \\
 0 & \text{si } y = 0, \ x \ \text{arbitrario} \\
 0 & \text{si } x = 0, \ y \ \text{arbitrario}
\end{cases}$$

Pruebe que existen las derivadas parciales de segundo orden en todo punto, y que en $(0, 0)$ $\frac{\partial^2 f}{\partial x \partial y}$ y $\frac{\partial^2 f}{\partial y \partial x}$ son distintas. ¿Porqué ocurre esto?

72. Sea $C = \{(x, y) \in \mathbb{R}^2 : xy > 0\}$, y sea $f : C \to \mathbb{R}^3$ definida por

$$f(x, y) = \left(e^{-x^2} \sin(y), \arctan(x/y), \log(xy^3) \right).$$

Encuentre las derivadas parciales de segundo orden de f.

73. Sea $f : \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x, y) = \begin{cases}
 xy^2 & \text{si } y \neq 0 \\
 0 & \text{si } y = 0
\end{cases}$$

Pruebe que existen las derivadas parciales de segundo orden en todo punto. Además, pruebe que $\frac{\partial^2 f}{\partial y \partial x}(0, 0) = \frac{\partial^2 f}{\partial x \partial y}(0, 0)$, aún cuando estas derivadas parciales no son continuas en $(0, 0)$.

74. Sea $R = \{(x, y) \in \mathbb{R}^2 : y > 0\}$, y sea $f : R \to \mathbb{R}^2$ por $f(x, y) = (x(y - \log(y)) + 1, ye^{y-x} - 2)$. Calcule $\det Jf(1, 1)$. ¿Qué puede decir acerca de la matriz $Jf(1, 1)$?

75. Estudiar la diferenciabilidad sobre \mathbb{R}^2 de las siguientes funciones:

(a)

$$f(x, y) = \begin{cases}
 \frac{x^2 y^2}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
 0 & \text{si } (x, y) = (0, 0)
\end{cases}$$
(b)
\[f(x, y) = \begin{cases}
\frac{x^3 - y^3}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases} \]

(c)
\[f(x, y) = \begin{cases}
\frac{xy^3}{x^4 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases} \]

(d)
\[f(x, y) = \begin{cases}
\frac{x^3y}{x^4 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases} \]

(e)
\[f(x, y) = \begin{cases}
\frac{x^3y}{\sqrt{x^4 + y^2}} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases} \]

76. Para la función \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \), estudiar la continuidad de \(f \) la existencia y continuidad de las derivadas parciales primeras de \(f \), donde:

(a)
\[f(x, y) = \begin{cases}
\frac{\text{sen}(x^3) - \text{sen}(y^3)}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases} \]

(b)
\[f(x, y) = \begin{cases}
\frac{\text{sen}(x^2) + \text{sen}(y^2)}{\sqrt{x^2 + y^2}} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases} \]
77. Estudiar si la función
\[f(x, y) = \begin{cases}
 x^2 \ \text{sen} \left(\frac{y}{x} \right) & \text{si } x \neq 0 \\
 0 & \text{si } x = 0
\end{cases} \]
es de clase C^2 sobre \mathbb{R}^2.

78. Sea $f : \mathbb{R}^2 \to \mathbb{R}$ definida por
\[f(x, y) = \begin{cases}
 \frac{x^3 y^3}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
 0 & \text{si } (x, y) = (0, 0)
\end{cases} \]
(a) Demostrar que f es de clase C^1 en \mathbb{R}^2.
(b) Demostrar que $\frac{\partial^2 f}{\partial y\partial x}(0, 0)$ y $\frac{\partial^2 f}{\partial x\partial y}(0, 0)$ existen y son iguales.
(c) Demostrar que $\frac{\partial^2 f}{\partial y\partial x}$ y $\frac{\partial^2 f}{\partial y\partial y}$ no son continuas en $(0, 0)$.

79. Sea $f : \mathbb{R}^2 \to \mathbb{R}$ definida por
\[f(x, y) = \begin{cases}
 \frac{xy^3}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
 0 & \text{si } (x, y) = (0, 0)
\end{cases} \]
Demonstrar que f es de clase C^1 en \mathbb{R}^2. Calcular $\frac{\partial^2 f}{\partial y\partial x} y \frac{\partial^2 f}{\partial y\partial y}$ y deducir que que f no es de clase C^2 sobre \mathbb{R}^2.

80. Sea $f : \mathbb{R}^2 \to \mathbb{R}$ definida por
\[f(x, y) = \begin{cases}
 \frac{x^6}{x^2 + (y - x)^2} & \text{si } (x, y) \neq (0, 0) \\
 0 & \text{si } (x, y) = (0, 0)
\end{cases} \]
¿Es f de clase C^1 sobre \mathbb{R}^2?
81. Analizar si la siguiente función tiene derivada direccional en el punto \((0, 0)\) en la dirección del vector \(v = (\cos(\theta), \sin(\theta))\) y si es diferenciable en dicho punto

\[
f(x, y) = \begin{cases}
\frac{x^3 + y^3}{\sin(x^2 + y^2)} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0) .
\end{cases}
\]

82. Suponga que un estudiante del curso de Análisis IV, realiza el siguiente cálculo: si \(w = f(x, y)\) e \(y = x^2\) entonces por la regla de la cadena, obtenemos

\[
\frac{\partial w}{\partial x} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial w}{\partial x} + 2x \frac{\partial w}{\partial y} .
\]

Por lo tanto, \(0 = 2x \frac{\partial w}{\partial y}\), de donde \(\frac{\partial w}{\partial y} = 0\). Este cálculo es incorrecto. Explique porqué, y realice éste en forma correcta. Muestre ejemplos en que cálculo falla.

83. Calcular \(\frac{d}{dt}\exp(f(t) \cdot g(t))\)

84. Sea \(f\) una función diferenciable de variable real a valores reales, y sea \(g: \mathbb{R}^2 \to \mathbb{R}\) una aplicación definida por

\[
g(x, y) = xyf \left(\frac{x + y}{xy} \right) .
\]

Demuestre que \(g\) satisface la ecuación diferencial

\[
x^2 \frac{\partial g}{\partial x} - y^2 \frac{\partial g}{\partial y} = G(x, y) : g(x, y),
\]

para alguna aplicación \(G\), y encontrar \(G\) explícitamente.

85. Sea \(f(u, v, w) = u^2 + v^2 - w\), donde \(u(x, y, z) = x^2y\), \(v(x, y, z) = y^2\), y \(w(x, y, z) = e^{-xz}\). Encuentre la derivada de \(f\).
86. Sea $U \subset \mathbb{R}^n$ un conjunto abierto, y sea $f : U \rightarrow \mathbb{R}^m$ una aplicación diferenciable. Defina $g(x) = \text{sen}((f(x), f(x)))$. Calcule $Dg(x)$.

87. Muestre que la función $f : \mathbb{R}^2 \rightarrow \mathbb{R}$, definida por

$$f(x, y) = \begin{cases} xy \frac{(x^2 - y^2)}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\ 0 & \text{si } (x, y) = (0, 0) \end{cases}$$

no satisface las condiciones del teorema de Schwarz.

88. Sean $G_1, G_2 : \mathbb{R}^3 \rightarrow \mathbb{R}$ aplicaciones diferenciables de clase C^1 al menos. Suponga que las ecuaciones

$$G_1(x, y, z) = 0$$
$$G_2(x, y, z) = 0$$

definen aplicaciones $y = y(x)$ y $z = z(x)$. Encuentre las derivadas $\frac{dy}{dx}$ y $\frac{dz}{dx}$.

89. Si $f(x, y) = (\text{tang}(x - 1) - e^y, x^2 - y^2)$ y $g(x, y) = (e^{x-y}, x - y)$. Encuentre $D(f \circ g)(x, y)$.

90. Sean $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ definida por $f(x, y) = (e^{x+y}, e^{x-y})$ y $\alpha : \mathbb{R} \rightarrow \mathbb{R}^2$ diferenciable, tal que $\alpha(0) = (0, 0)$ y $\frac{d\alpha}{dt}(0) = (2, -5)$. Calcule el vector velocidad en $t = 0$ de $f \circ \alpha$.

91. Demuestre la identidad

$$\frac{\partial}{\partial x} \int_0^x f(x, y) dy = f(x, y) + \int_0^x \frac{\partial f}{\partial x}(x, y) dy.$$

92. Sea $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ dada por $f(x, y, z) = (x^2+y^2+z^2) \log(\sqrt{x^2+y^2+z^2})$, para $(x, y, z) \neq (0, 0, 0)$, y sea $g : \mathbb{R} \rightarrow \mathbb{R}^3$ dada por $g(t) = (e^t, e^{-t}, t)$. Calcule $\text{grad } f$, $\frac{dg}{dt}$, $\frac{df \circ g}{dt}$, y $D(g \circ f)(x, y, z)$.
93. Sea \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) definida por

\[
f(x, y) = \begin{cases}
\frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases}
\]

¿Es \(f \) diferenciable en \((0,0)\) ?. Justifique su respuesta.

94. Sea \(z = \log(r) \), donde \(r = \sqrt{x^2 + y^2} \). Calcule \(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} \).

95. Si \(f(x, y, z) = x^3 + 3x^2y - 4xy^2 + y^2z + 2z^2 + xz \), encuentre la derivada direccional de \(f \) en el punto \((1,1,2)\) en la dirección del vector \(v = (2,1,2) \).

96. Si \(f(x, y) = (x^2 - 1)(y^2 - 1) \). Encuentre los puntos críticos de \(f \).

Use los teoremas vistos en clases para clasificar los puntos críticos de \(f \).

97. Suponga que \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) es una aplicación suficientemente diferenciable que satisface la ecuación

\[
\frac{\partial^2 f}{\partial x^2}(x, y) + \frac{\partial^2 f}{\partial y^2}(x, y) = 0 \quad \text{(Ecuación de Laplace)}
\]

Pruebe que la aplicación \(\phi \) definida por

\[
\phi(x, y) = f \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2} \right) \quad \text{para } (x, y) \neq (0,0)
\]

también satisface la ecuación de Laplace

98. Si \(F = (F_1, F_2, F_3) : U \subset \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) es una aplicación diferenciable, donde \(U \) es un conjunto abierto. Se define el rotacional de \(F \), notación rot \(F \) o \(\nabla F \), y la divergencia de \(f \), notación div \(F \) por

\[
\text{rot } F = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right),
\]
\[
\text{div} \, F = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z},
\]
respectivamente. Pruebe que si \(F \) es de clase \(C^2 \) entonces \(\text{div} \, \text{rot} \, F = 0 \)

99. Calcule \(\text{rot} \, F \) y \(\text{div} \, F \) para \(F(x, y, z) = \frac{1}{x^2+y^2+z^2} (yz, -xz, xy) \)

100. Con las hipótesis apropiadas sobre las aplicaciones, pruebe que

 (a) \(\text{rot}(F + G) = \text{rot} \, F + \text{rot} \, G \).

 (b) \(\text{div}(F + G) = \text{div} \, F + \text{div} \, G \).

 (c) \(\text{rot} \, \text{grad} \, f = 0 \), donde \(f : U \subset \mathbb{R}^3 \rightarrow \mathbb{R} \).

 (d) \(\text{div} \, (\text{grad} \, f \times \text{grad} \, g) = 0 \), donde \(f, g : U \subset \mathbb{R}^n \rightarrow \mathbb{R} \).

101. Se define el laplaciano de una aplicación \(f : U \subset \mathbb{R}^n \rightarrow \mathbb{R} \) de clase \(C^2 \) al menos, como

 \[
 \nabla^2 f = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}.
 \]

 Pruebe que \(\nabla^2 (fg) = f\nabla^2 g + g\nabla^2 f + 2(\text{grad} \, f, \text{grad} \, g) \).

102. Mostrar que en coordenadas polares \((r, \theta)\) en \(\mathbb{R}^2 \), la ecuación de Laplace para \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) se escribe como

 \[
 \frac{\partial^2 f}{\partial r^2} + \frac{1}{r^2} \frac{\partial f}{\partial \theta} + \frac{1}{r} \frac{\partial^2 f}{\partial r} = 0.
 \]

103. Mostrar que en coordenadas esféricas \((\rho, \theta, \phi)\) en \(\mathbb{R}^3 \) la ecuación de Laplace se escribe como

 \[
 \frac{\partial}{\partial \mu} \left((1 - \mu^2) \frac{\partial f}{\partial \mu} \right) + \frac{1}{1 - \mu^2} \frac{\partial^2 f}{\partial \theta^2} + \rho \frac{\partial^2 (\rho f)}{\partial \rho^2} = 0,
 \]

 donde \(\mu = \cos(\theta) \).
104. Sea $U \subset \mathbb{R}^3$ un conjunto abierto en el cual se tiene bien definidas las coordenadas esféricas (ρ, θ, ϕ). Si $f : U \to \mathbb{R}$ y $F : U \to \mathbb{R}^3$ son suficientemente diferenciables, encontrar fórmulas en coordenadas esféricas para

(a) $\text{div} \, f$.
(b) $\text{grad} \, f$.
(c) $\text{rot} \, F$.

Ilustre sus cálculos con al menos dos ejemplos.

105. Sea $U \subset \mathbb{R}^3$ un conjunto abierto en el cual se tiene bien definidas las coordenadas cilíndricas (r, θ, z). Si $f : U \to \mathbb{R}$ y $F : U \to \mathbb{R}^3$ son suficientemente diferenciables, encontrar fórmulas en coordenadas esféricas para

(a) $\text{div} \, f$.
(b) $\text{grad} \, f$.
(c) $\text{rot} \, F$.

Ilustre sus cálculos con al menos dos ejemplos.

106. Sea $f(x, y) = |xy|$. Pruebe que f es diferenciable en $(0, 0)$, pero no es de clase C^1.

107. Si $f : U \subset \mathbb{R}^n \to \mathbb{R}$, U abierto, es tal que las derivadas parciales $\frac{\partial f}{\partial x_i}$ existen y son acotadas en una vecindad de $a \in U$, pruebe que f es continua en a.

108. Sea $U \subset \mathbb{R}^n$ un conjunto abierto. Sea $f : U \to \mathbb{R}^m$. Pruebe que si $\frac{\partial f}{\partial u}(a)$, existe para $a \in U$, y $v = \lambda u$, donde $\lambda \in \mathbb{R}$
es una constante no cero, entonces \(\frac{\partial f}{\partial v}(a) \) existe y se tiene que
\[\frac{\partial f}{\partial v}(a) = \lambda \frac{\partial f}{\partial u}(a). \]

109. Sea \(f : \mathbb{R}^2 \to \mathbb{R} \) definida por
\[
f(x, y) = \begin{cases}
\frac{xy}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0).
\end{cases}
\]

(a) ¿Para qué vectores \(u \in \mathbb{R}^2 \) con \(u \neq 0 \), existe \(\frac{\partial f}{\partial u}(0, 0) \)? En caso de que tal derivada direccional exista, calcule ésta.

(b) ¿Existen \(\frac{\partial f}{\partial x}(0, 0) \) y \(\frac{\partial f}{\partial y}(0, 0) \)?

(c) ¿Es \(f \) diferenciable en \((0, 0) \)? Justifique su respuesta.

110. Sea \(f : \mathbb{R}^2 \to \mathbb{R} \) definida por
\[
f(x, y) = \begin{cases}
\frac{x^2 y^2}{x^2 + y^2 + (y - x)^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0).
\end{cases}
\]

(a) ¿Para qué vectores \(u \in \mathbb{R}^2 \) con \(u \neq 0 \), existe \(\frac{\partial f}{\partial u}(0, 0) \)? En caso de que tal derivada direccional exista, calcule ésta.

(b) ¿Existen \(\frac{\partial f}{\partial x}(0, 0) \) y \(\frac{\partial f}{\partial y}(0, 0) \)?

(c) ¿Es \(f \) diferenciable en \((0, 0) \)? Justifique su respuesta.
111. La función \(f : \mathbb{R}^2 \to \mathbb{R} \) definida por

\[
 f(x, y) = \begin{cases}
 x \sen(1/x) + y \sen(1/y) & \text{si } xy \neq 0 \\
 x \sen(1/x) & \text{si } y = 0, \ x \neq 0 \\
 y \sen(1/y) & \text{si } x = 0, \ y \neq 0 \\
 0 & \text{si } x = y = 0,
\end{cases}
\]

es continua, pero no diferenciable en el origen.

112. Sea \(f : \mathbb{R}^2 \to \mathbb{R} \) definida por \(f(x, y) = |x| + |y| \). ¿es \(f \) diferenciable en \((0, 0)\)? Justifique su respuesta.

113. Sea \(f : \mathbb{R}^3 \to \mathbb{R}^2 \) una aplicación diferenciable que satisface: \(f(0, 0, 0) = (1, 2) \) y

\[
 Df(0, 0, 0) = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \end{pmatrix}
\]

Sea \(g : \mathbb{R}^2 \to \mathbb{R}^2 \) la aplicación dada por \(g(x, y) = (x+2y+1, 3xy) \). Calcule \(D(g \circ f)(0, 0, 0) \).

114. Sean \(f : \mathbb{R}^2 \to \mathbb{R}^3 \) y \(g : \mathbb{R}^3 \to \mathbb{R} \) definidas por, \(f(x, y) = (e^{2x+y}, 3y-\cos(x), x^2+y+2) \) y \(g(x, y, z) = (3x+2y+z^2, x^2-z+1) \).

(a) Defina \(F(x, y) = g(f(x, y)) \). Calcule \(DF(0, 0) \).

(b) Si \(G(x, y, z) = f(g(x, y, z)) \). Calcule \(DG(0,0,0) \).

115. Sea \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) definida por \(f(x, y) = (x^2 - y^2, 2xy) \).

(a) Muestre que \(f \) es inyectiva en el conjunto \(A = \{(x, y) \in \mathbb{R}^2 : x > 0 \} \).
(b) Describa geométricamente el conjunto imagen \(B = f(A) \).

(c) Si \(g : B \to A \) es la función inversa de \(f \). Muestre que \(g \) es diferenciable y calcule \(Dg(0,1) \).

116. Sea \(f : \mathbb{R}^n \to \mathbb{R}^n \) definida por \(f(x) = ||x||^2 x \). Demuestre que \(f \in C^\infty \) y que \(f \) aplica la bola unitaria con centro en el origen, \(B(0,1) \) en sí misma de modo inyectivo. ¿La inversa de \(f/B(0,1) \) es diferenciable en \(0 \)?

117. Sea \(g : \mathbb{R}^2 \to \mathbb{R}^2 \) definida por \(g(x,y) = (2y e^{2x}, xe^y) \), y sea \(f : \mathbb{R}^2 \to \mathbb{R}^3 \) definida por \(f(x,y) = (3x - y^2, 2x + y, xy + y^3) \).

(a) Demuestre que existe una vecindad de \((0,1) \) de modo que la restricción de \(g \) a esa vecindad es inyectiva.

(b) Encuentre \(D(f\circ g^{-1})(2,0) \), donde la inversa \(g^{-1} \) esté definida.

118. Sea \(f : \mathbb{R}^3 \to \mathbb{R}^2 \) una aplicación de clase \(C^1 \), escribe \(f \) en la forma \(f(x,y_1,y_2) \). Suponga que \(f(3,-1,2) = 0 \) y que

\[
\begin{pmatrix}
1 & 2 & 1 \\
1 & -1 & 1
\end{pmatrix}
\]

(a) Muestre que existe una función \(g : B \subset \mathbb{R} \to \mathbb{R}^2 \), \(g = (g_1,g_2) \), de clase \(C^1 \), donde \(B \) es un intervalo abierto, tal que \(f(x,g_1(x),g_2(x)) = 0 \), para \(x \in B \) y \(g(3) = (-1,2) \)

(b) Calcule \(Dg(3) \).

119. Sean \(f(u,v,w) = (e^{u-w}, \cos(u+v) + \sin(u+v+w)) \) y \(g(x,y) = (e^x, \cos(y-x), e^{-y}) \). Encuentre \(D(f \circ g)(0,0) \).
120. Sea
\[f(r, \theta) = \begin{cases}
\frac{\sin(6r)}{6r} & \text{si } r \neq 0 \\
1 & \text{si } r = 0
\end{cases} \]

Encuentre \(\lim_{r \to 0} f(r, \theta) \). ¿Es \(f \) continua en el punto \((0, 0)\)? Encuentre \(\frac{\partial f}{\partial r}(0, 0) \).

121. Encuentre \(\frac{\partial w}{\partial u} \) y \(\frac{\partial w}{\partial v} \) en \((u, v) = (0, 0)\), donde \(w = \log(1 + x^2) - \arctan(y) \) y \(x = 2^u \cos(v) \) e \(y = uv \).

122. Encuentre la aproximación de Taylor de orden 2 para \(f(x, y) = e^{x^2-1} \cos(y) \) alrededor del punto \((1, 0)\).

123. Pruebe que la función \(f : \mathbb{R}^2 \to \mathbb{R} \) definida por \(f(x, y) = \sqrt{|xy|} \) es continua, posee ambas derivadas parciales (calcule ellas en forma explícita), pero no es diferenciable en el origen.

124. Pruebe que la función \(f : \mathbb{R}^2 \to \mathbb{R} \) definida por
\[f(x, y) = \begin{cases}
x y \frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0)
\end{cases} \]
en diferenciable en todo su dominio.

Pruebe además, que \(\frac{\partial^2 f}{\partial x \partial y}(0, 0) \neq \frac{\partial^2 f}{\partial y \partial x}(0, 0) \).

125. Sea \(f : \mathbb{R}^5 \to \mathbb{R}^2 \) una aplicación de clase \(C^1 \). Sea \(a = (1, 2, -1, 3, 0) \).

Suponga que \(f(a) = 0 \) y que
\[Df(a) = \begin{pmatrix} 1 & 3 & 1 & -1 & 2 \\ 0 & 0 & 1 & 2 & 4 \end{pmatrix} \]

(a) Muestre que existe una aplicación de clase \(C^1 \), \(g : B \to \mathbb{R}^2 \), con \(g = (g_1, g_2) \), definida en un conjunto abierto \(B \subset \mathbb{R}^3 \) que
contiene al punto \(a \), tal que \(f(x, g_1(x, u, v), g_2(x, u, v), u, v) = 0 \) para \((x, u, v) \in B \), y \(g(1, 3, 0) = (2, -1) \)

(b) Calcule \(Dg(1, 3, 0) \).

126. Sea \(F : \mathbb{R}^2 \to \mathbb{R} \) una aplicación de clase \(C^2 \), que satisface: \(F(0, 0) = y \) \(DF(0, 0) = (2 \ 3)_{1 \times 2} \). Sea \(G : \mathbb{R}^3 \to \mathbb{R} \) la aplicación definida por \(G(x, y, z) = F(x + 2y + 3z - 1, x^3 + y^2 - z^2) \).

(a) Pruebe que podemos resolver la ecuación \(G(x, y, z) = 0 \) para \(z \), digamos \(z = g(x, y) \) para \((x, y) \) en una vecindad \(B \) de \((-2, 3)\), tal que \(g(-2, 3) = -1 \)

(b) Si \(\frac{\partial^2 F}{\partial x^2}(-2, 3) = 3 \), \(\frac{\partial^2 F}{\partial x \partial y}(-2, 3) = -1 \) y \(\frac{\partial^2 F}{\partial y^2}(0, 0) = 5 \), calcule \(\frac{\partial^2 F}{\partial y \partial x}(-2, 3) \).

127. Encuentre la derivada direccional de \(f \) en el punto \(P \) en la dirección del vector tangente a la curva \(\gamma \) en \(P \), donde los respectivos elementos son indicados en cada caso:

(a) \(f(x, y) = x^2 + y^2 \), \(P = (1, 2) \), y \(\gamma : x^2 + y^2 = 5 \).

(b) \(f(x, y) = 2xy + y^2 \), \(P = \sqrt{3}, 1 \), y \(\gamma : x^2 + \frac{y^2}{4} = 1 \).

(c) \(f(x, y, z) = \log(xy + yz + xz) \), \(P = (0, 1, 1) \) y \(\gamma \) dada por
\[
\begin{align*}
x(t) &= \cos(t) \\
y(t) &= \sin(t) \\
z(t) &= 1
\end{align*}
\]

(d) \(f(x, y, z) = x^2 + y^2 + z^2 \), \(P = (0, R, \pi a/2) \), y \(\gamma \) dada por
\[
\begin{align*}
x(t) &= R \cos(t) \\
y(t) &= R \sin(t) \\
z(t) &= at
\end{align*}
\]
128. Pruebe que \(\text{div}(uF) = u \text{div}(F) + \langle F, \text{grad}(u) \rangle \), donde \(F : \mathbb{R}^n \to \mathbb{R}^n \) y \(u : \mathbb{R}^n \to \mathbb{R} \).

129. Sea \(f : \mathbb{R}^2 \to \mathbb{R} \) definida por
\[
f(x, y) = \begin{cases}
\frac{2xy}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\
0 & \text{si } (x, y) = (0, 0) .
\end{cases}
\]
Encuentre las direcciones en \(\mathbb{R} \) en las cuales \(f \) tiene derivada direccional en el punto \((0, 0) \).

130. Sea \(f(x, y, z) = |x+y+z| \). Encuentre las direcciones en las cuales la derivada direccional de \(f \) en el punto \((1, -1, 0) \) existe.

131. Sea \(f : U \subset \mathbb{R}^n \to \mathbb{R} \), donde \(U \) es abierto. Suponga que \(f \) en un punto \(x_0 \in U \) y en la dirección \(v \in \mathbb{R}^n \) tiene derivada direccional, \(\frac{df}{dv}(x_0) \). Calcule la derivada direccional de \(f \) en \(x_0 \) en la dirección \(-v \).

132. Sea \(f(x, y) = \log(x^2 + 2y + 1) + \int_0^x \cos(t^2)dt \), donde \(y > -1/2 \). Calcule \(df(x, y) \).

133. Calcule \(\text{grad} f(x) \) para cada una de las siguientes aplicaciones \(f : \mathbb{R}^n \to \mathbb{R} \):
 (a) \(f(x) = \langle x_0, x \rangle \), donde \(x_0 \in \mathbb{R}^n \) es arbitrario.
 (b) \(f(x) = ||x||, \ x \neq 0 \).
 (c) \(f(x) = (\langle x_0, x \rangle)^2 \).

134. Calcule \(\text{div}(\text{grad}(e^x \sin(y))) \).
135. Sea \(f : \mathbb{R} \to \mathbb{R} \) definida por
\[
f(x) = \begin{cases}
e^{-1/x^2} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}
\]
Pruebe que \(f \in C^\infty \) y que \(f^{(k)}(0) = 0 \) para todo \(k \geq 0 \).

136. Sea \(f(x) = x^k \sen(1/x) \) si \(x \neq 0 \) y \(f(0) = 0 \). Pruebe que
(a) Si \(k = 0 \) entonces \(f \) es discontinua en \(x = 0 \).
(b) Si \(k = 1 \) entonces \(f \) es continua en \(x = 0 \), pero no diferenciable en ese punto.
(c) Si \(k = 2 \) entonces \(f \) es diferenciable en \(x = 0 \), pero no es de clase \(C^1 \).
(d) ¿Qué puede decir para \(k \geq 3 \)?

137. Sea \(f : \mathbb{R}^2 \to \mathbb{R} \) definida por
\[
f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\ 0 & \text{si } (x, y) = (0, 0). \end{cases}
\]
(a) Si \((x, y) \neq (0, 0) \). Encuentre \(\frac{\partial^2 f}{\partial x \partial y} (x, y) \) y \(\frac{\partial^2 f}{\partial y \partial x} (x, y) \), y verifique que ellas son iguales.
(b) Pruebe que \(\frac{\partial f}{\partial x} (0, 0) = \frac{\partial f}{\partial y} (0, 0) = 0 \) y que \(f \in C^1 \).
(c) Pruebe que \(\frac{\partial^2 f}{\partial x \partial y} (0, 0) \) y \(\frac{\partial^2 f}{\partial y \partial x} (0, 0) \) existen, pero no son iguales.

138. Sea \(f : \mathbb{R}^n \to \mathbb{R} \) es definida por \(f(x) = (1 + \langle x, x \rangle)^{x, x} \). Calcule \(Df(x) \).
139. Si $F(x) = f(x, g(x))$ donde $f : U \subset \mathbb{R}^2 \to \mathbb{R}$ y $g : \mathbb{R} \to \mathbb{R}$ son aplicaciones de clase C^2. Encuentre $DF(x)$ y $D^2F(x)$.

140. Sea f una aplicación de clase C^2, definamos la aplicación $F(r, \theta) = f(r \cos(\theta), r \sen(\theta))$. Pruebe que
\[
\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 F}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 F}{\partial \theta^2} + \frac{1}{r} \frac{\partial F}{\partial r}.
\]

141. Si $F(f(y, z), y, z) = 0$ y $\frac{\partial f}{\partial x}(f(y, z), y, z) \neq 0$ para cada (y, z) en un abierto $U \subset \mathbb{R}^2$. Encuentre $\frac{\partial^2 f}{\partial x^2}$.

142. Sea $F(x, y, z) = (x, y, z)$. Pruebe que
\begin{enumerate}
 \item [(a)] $\text{div } F = 3$.
 \item [(b)] $\text{rot } F = 0$.
 \item [(c)] $\text{div} \left(\frac{F(x,y,z)}{\|F(x,y,z)\|} \right) = 0$.
 \item [(d)] $\text{rot} \left(\frac{F(x,y,z)}{\|F(x,y,z)\|} \right) = 0$.
 \item [(e)] $\text{grad} \left(\frac{1}{\|F(x,y,z)\|} \right) = -\frac{F(x,y,z)}{\|F(x,y,z)\|^2}$.
\end{enumerate}

143. Calcule $\text{grad}(g \circ f)$, donde $f : U \subset \mathbb{R}^n \to \mathbb{R}^m$ y $g : V \subset \mathbb{R}^m \to \mathbb{R}$ son aplicaciones de clase C^k ($k \geq 1$, con U y V abiertos y $f(U) \subset V$).

144. Sean $f : \mathbb{R}^2 \to \mathbb{R}$ y $u, v : \mathbb{R}^2 \to \mathbb{R}$ aplicaciones de clase C^r $(r \geq 1)$. Defina $F(x, y) = f(u(x, y), v(x, y))$. Demuestre que
\[
\text{grad } F = \frac{\partial f}{\partial u} \text{grad}(u) + \frac{\partial f}{\partial v} \text{grad}(v).
\]

145. Encuentre y clasifique los puntos críticos de las siguientes funciones
\begin{enumerate}
 \item [(a)] $f(x, y) = \exp(x^2 + y^2)/2 - \exp(-x^2 - y^2) - 3(x^2 + y^2)/2$
\end{enumerate}
(b) \(f(x, y) = \sin(x) + \cos(y) + \sin(x + y) \)

(c) \(f(x, y) = \exp(x^2 + (\cos(y))^2) + 2\exp(-x^2 - (\cos(y))^2) - 3(x^2 + (\cos(y))^2) \).

146. (a) Encuentre \(x, y, z \) para la caja de máximo volumen, tal que \(xy + yz + xz = 1 \),

(b) Encuentre todos los extremos de la función \(f(x, y) = x^2 + y^2 \) sujeta a la condición \(x^4 + y^4 = 2 \)

(c) Encuentre todos los extremos de la función \(f(x, y) = 2x + y + 4z \) sujeta a la condición \(x^2 + y + z^2 = 16 \).

147. Calcule las derivadas parciales \(\frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}, \frac{\partial^2 f}{\partial y \partial x} \), para las siguientes funciones (en su dominio de definición)

(a) \(f(x, y) = \sqrt{x^2 + y^2} \),

(b) \(f(x, y) = e^x \sin(y) \).

148. Si \(x, y, z \) son funciones de la variable \(t \), y si \(f \) es una función de las variables \(x, y, z \). Demuestre que

\[
\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt}.
\]

149. Si \(y, z \) son funciones de \(x, y \) \(f \) es una función de \(x, y, z \). Demuestre que

\[
\frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx} + \frac{\partial f}{\partial z} \frac{dz}{dx}.
\]

150. Si la ecuación \(f(x, y, z) = 0 \) define a \(z \) como función de \(x \) e \(y \). Demuestre que

\[
\frac{\partial z}{\partial x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}}.
\]
151. Calcule la diferencial de $f(x, y, z) = e^z \cos(x + y)$.

152. Si $x^2 + y^2 + z^2 = 1$, encuentre (donde están bien definidas) las derivadas parciales $\frac{\partial z}{\partial x}$ y $\frac{\partial z}{\partial y}$.

153. Las tres variables x, y y z están relacionadas por $F(x, y, z) = 0$, donde F es diferenciable. Pruebe que

$$\frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \frac{\partial x}{\partial z} = -1.$$

154. Encuentre todos los puntos máximos y mínimos relativos y puntos sillas (si ellos existen) para la función $f(x, y) = x^2y^2 - x^2 - y^2$.

155. Encuentre las derivadas parciales $\frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}, \frac{\partial^2 f}{\partial y \partial x}$ para las funciones

(a) $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$,
(b) $f(x, y) = \sin(x - y)$,
(c) $f(x, y) = \sinh(x) \cosh(y)$.

156. Demuestre que $\Psi(x, z) = A \sin(x - \nu t)$ satisface la ecuación

$$\frac{\partial^2 \Psi}{\partial t^2} = \nu^2 \frac{\partial^2 \Psi}{\partial x^2}.$$

157. Encuentre el desarrollo de Taylor de la función $f(x, y)$ hasta orden 2 en el punto indicado, donde:

(a) $f(x, y) = \ln(x^2y^2)$ en $p = (1, 1)$,
(b) $f(x, y) = \cosh(xy)$ en $p = (0, 0)$.

158. Encuentre todos los puntos máximos y mínimos relativos y puntos sillas (si ellos existen) para la función
(a) \(f(x, y) = 2x - 2y - x^2 - y^2 \),
(b) \(f(x, y) = x^2 - xy + y^2 \).

159. Si \(w = f(x(s, t), y(s, t), t^2) \), donde \(f(x, y, z) \) es una aplicación diferenciable a valores reales. Calcule \(\frac{\partial w}{\partial t} \).

160. Estudiar los puntos críticos de \(f : \mathbb{R}^2 \to \mathbb{R} \) definida por \(f(x, y) = x^3 + 3xy^2 - 15x - 12y \).

161. Encuentre y clasifique los puntos críticos de \(f(x, y) = e^{xy} \).

162. Encuentre y clasifique los puntos críticos de \(f(x, y) = \frac{x}{x^2 + y^2 + 1} \).

163. Encuentre y clasifique los puntos críticos de \(f(x, y) = (x + 2y + 1)xy \).

164. Usando multiplicadores de Lagrange, encuentre el máximo de \(f(x, y) = x + y \), sobre la elipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), donde \(a \) y \(b \) son constantes positivas.

165. Usando multiplicadores de Lagrange, encuentre el máximo de \(f(x, y, z) = ax + by + cz \) sobre la esfera \(x^2 + y^2 + z^2 = 1 \).

166. Sea \(p > 1 \) y suponga que \(\frac{1}{p} + \frac{1}{q} = 1 \). Encuentre el máximo de la función \(f(x_1, x_2, y_1, y_2) = x_1y_1 + x_2y_2 \), sujeto a las condiciones \(x_1^p + x_2^p = 1 \) y \(y_1^q + y_2^q = 1 \).

167. Encuentre y clasifique los puntos críticos de la función \(f(x, y) = x^3 + y^3 - 3x - 12y + 17 \).

168. Usando el método de los multiplicadores de Lagrange encuentre el máximo de \(f(x, y) = x^2y \), sobre el círculo \(x^2 + y^2 = 12 \).
169. Use el método de los multiplicadores de Lagrange para encontrar el máximo de \(f(x, y, z) = z^2 \) sujeto a las condiciones \(x + y + z = 1 \) y \(x^2 + y^2 = 8 \).

170. Encuentre el máximo de la función \(f(x, y, z) = x + yz \) sujeto a las condiciones \(x + z = 2y \) y \(\{(x, y) \in [3, 5] \times [0, 2]\} \).

171. Sean \(f(u, v, w) = (e^{u-w}, \cos(u + v) + \sen(u + v + w)) \) y \(g(x, y) = (e^x, \cos(y - x), e^{-y}) \). Calcule \(D(f \circ g)(0, 0) \).
Capítulo 7

Superficies en Espacios Euclideanos

Para $m \leq n$ la inclusión canónica $i : \mathbb{R}^m \to \mathbb{R}^n$ definida por $i(x_1, \ldots, x_m) = (x_1, \ldots, x_m, 0, \ldots, 0)$ nos permite identificar el espacio \mathbb{R}^m con el subespacio $\mathbb{R}^m \times \{0\} \subset \mathbb{R}^n$ y podemos escribir $\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^{n-m}$.

Recordemos que dado un conjunto $M \subset \mathbb{R}^n$, podemos dotar a M una topología definiendo los abiertos de M como sigue: $A \subset M$ es un abierto si existe un conjunto abierto $U \subset \mathbb{R}^n$ tal que $A = M \cap U$. Es fácil ver que la colección de los abiertos de M definidos de este modo forman una topología para M, y decimos en este caso que M tiene la topología inducida por la de \mathbb{R}^n.

Definición 7.1 Sea $M \subset \mathbb{R}^n$, con la topología inducida. Decimos que M es una superficie de clase C^r ($r \geq 1$) y dimensión m en \mathbb{R}^n si, para cada $x \in M$ existe un abierto $U \subset \mathbb{R}^n$, con $x \in U$, y existe un difeomorfismo C^r, $f : U \to f(U) \subset \mathbb{R}^n$ tal que $f(M \cap U) = f(U) \cap (\mathbb{R}^m \times \{0\})$.

219
El número \(n - m \) es llamado la codimensión de \(M \) en \(\mathbb{R}^n \).

El siguiente teorema caracteriza la noción de superficie de varios modos, todos ellos equivalentes.

Teorema 7.1 Sea \(M \subset \mathbb{R}^n \), con la topología inducida. Entonces las afirmaciones siguientes son equivalentes,

(i) \(M \) es una superficie de clase \(C^r \) (\(r \geq 1 \)) y dimensión \(m \) en \(\mathbb{R}^n \);

(ii) para cada \(x \in M \) existe un abierto \(U \subset \mathbb{R}^n \), con \(x \in U \), y existen \(n - m \) funciones reales de clase \(C^r \), \(f_i : U \to \mathbb{R} \) con \(f_i(x) = 0 \), para \(i = 1, 2, \ldots, n - m \), tales que las formas lineales \(df_i(x) : \mathbb{R}^n \to \mathbb{R} \) son linealmente independientes y

\[
M \cap U = \bigcap_{i=1}^{n-m} f_i^{-1}(0),
\]

(las \(n - m \) formas lineales \(df_i(x) : \mathbb{R}^n \to \mathbb{R} \) son linealmente independientes si, y sólo si, la matriz jacobiana de la aplicación \(f : U \subset \mathbb{R}^n \to \mathbb{R}^{n-m} \), dada por \(f = (f_1, \ldots, f_{n-m}) \),

\[
Jf(x) = \left(\frac{\partial f_i(x)}{\partial x_j} \right)_{i=1,\ldots,n-m, j=1,\ldots,n}
\]

tiene rango \(n - m \),)
(iii) para cada \(x \in M\) existe un abierto \(U \subset \mathbb{R}^n\), con \(x \in U\), y existe una submersión \(C^r\), \(f : U \to \mathbb{R}^{n-m}\), con \(f(x) = 0\), tal que \(M \cap U = f^{-1}(0)\) (en este caso decimos que 0 es un valor regular de \(f\) y consecuentemente toda superficie es localmente la imagen inversa de un valor regular). (En general, sea \(U \subset \mathbb{R}^n\) un conjunto abierto y sea \(f : U \to \mathbb{R}^\ell\) una aplicación de clase \(C^r\) (\(r \geq 1\)). Decimos que \(v \in \mathbb{R}^\ell\) es un valor regular de \(f\) si, o bien \(f^{-1}(v) = \emptyset\) o bien si \(f^{-1}(v) \neq \emptyset\) entonces para cada \(x \in f^{-1}(v)\), la derivada \(Df(x) : \mathbb{R}^n \to \mathbb{R}^\ell\) es una aplicación lineal sobreyectiva. En particular, \(n \geq \ell\).)

(iv) para cada \(x \in M\), existen un abierto \(U \subset \mathbb{R}^n\) con \(x = (x_1, \ldots, x_n) \in U\), un abierto \(U' \subset \mathbb{R}^m\) con \(x' = (x_1, \ldots, x_m) \in U'\) y \(n-m\) funciones reales \(C^r\), \(h_i : U' \to \mathbb{R}, \ i = 1, 2, \ldots, n-m\) tales que, salvo una permutación en las coordenadas, \(M \cap U\) es el gráfico de la aplicación \(h = (h_1, \ldots, h_{n-m}) : U' \to \mathbb{R}^{n-m}\), esto es, toda superficie es localmente el gráfico de una aplicación diferenciable;

(v) para cada \(x \in M\), existen abiertos \(U \subset \mathbb{R}^n\) con \(x \in U\) y \(\Omega \subset \mathbb{R}^m\) con \(0 \in \Omega\) y una aplicación \(C^r\), \(\varphi : \Omega \to \mathbb{R}^n\), con \(\varphi(0) = x\) y tal que \(\varphi\) es un homeomorfismo desde \(\Omega\) sobre \(M \cap U\) (\(M\) con la topología inducida de \(\mathbb{R}^n\) y \(D\varphi(0) : \mathbb{R}^m \to \mathbb{R}^n\) inyectiva. Una aplicación \(\varphi\) es llamada una parametrización del abierto \(V = M \cap U\) de \(M\) que contiene a \(x\).

Demostración.

(ii) \(\Rightarrow\) (iii)) Si las aplicaciones \(f_i : U \to \mathbb{R}, \ i = 1, \ldots, n-m\) son como en (ii), entonces es inmediato que la aplicación \(f = (f_1, \ldots, f_{n-m}) : U \to \mathbb{R}^{n-m}\) es una submersión y que \(M \cap U = f^{-1}(0)\).
(iii) \Rightarrow (ii) Si $f : U \subset \mathbb{R}^n \to \mathbb{R}^{n-m}$ es una submersión como en (iii), escribiendo $f = (f_1, \ldots, f_{n-m})$ se tiene que las funciones coordenadas $f_i : U \to \mathbb{R}$ de f satisfacen (ii), pues $df_i(x)$ son linealmente independientes para cada $x \in U$, y $\cap_{i=1}^{n-m} f_i^{-1}(0) = f^{-1}(0) = M \cap U$.

(iii) \Rightarrow (i) Sean $x \in M$ y $U \subset \mathbb{R}^n$ abierto con $x \in U$, y sea $f : U \to \mathbb{R}^{n-m}$ una submersión C^r, tal que $M \cap U = f^{-1}(0)$ entonces por el Teorema de la Forma Local de las Submersiones, existen un abierto $U' \subset \mathbb{R}^n$ con $x \in U'$ y un difeomorfismo C^r, $h : U' \to h(U') \subset \mathbb{R}^n$ tal que $f/\pi_2 = \pi_2 \circ h$, donde $\pi_2 : \mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^{n-m} \to \mathbb{R}^{n-m}$ es la proyección en la segunda coordenada. Tenemos, $M \cap U' = f^{-1}(0) = (\pi_2 \circ h)^{-1}(0) = h^{-1}(\pi_2^{-1}(0)) = h^{-1}(\mathbb{R}^m \times \{0\})$, es decir, $h(M \cap U') \subset \mathbb{R}^m \times \{0\}$. Luego, $h(M \cap U') = h(U') \cap (\mathbb{R}^m \times \{0\})$ y el difeomorfismo $h : U' \to h(U')$ satisface la definición de superficie.

(i) \Rightarrow (v) Sean $x \in M$ y $U \subset \mathbb{R}^n$ un conjunto abierto, y sea $f : U \to f(U) \subset \mathbb{R}^n$ un difeomorfismo C^r, con $r \geq 1$, tal que $f(M \cap U) = f(U) \cap (\mathbb{R}^m \times \{0\})$. Aplicando una traslación, si es necesario, podemos suponer que $f(x) = 0$. Haciendo $\Omega = f(U \cap M) = f(U) \cap (\mathbb{R}^m \times \{0\}) \subset \mathbb{R}^m \times \{0\} \equiv \mathbb{R}^m$, tenemos que Ω es abierto y $0 \in \Omega$. Sea $i : \mathbb{R}^m \to \mathbb{R}^n$ la inclusión canónica, $i(y) = (y, 0)$, donde $0 \in \mathbb{R}^{n-m}$. Definamos $\varphi = f^{-1} \circ i$, entonces $\varphi : \Omega \to \mathbb{R}^n$ satisface $\varphi(0) = x$, $\varphi \in C^r$ y es un homeomorfismo desde Ω sobre $M \cap U$. Además, $D\varphi(0) : \mathbb{R}^m \to \mathbb{R}^n$ es inyectiva. Luego φ es una parametrización de la vecindad $M \cap U$ de x en M.

(v) \Rightarrow (iv) Renumerando las coordenadas de \mathbb{R}^n, si es necesario, podemos suponer que $D\varphi(0)(\mathbb{R}^m) \cap \mathbb{R}^{n-m} = \{0\}$, donde $\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^{n-m}$. Sea $\pi_1 : \mathbb{R}^m \times \mathbb{R}^{n-m} \to \mathbb{R}^m$ la proyección en la primera coordenada, $\pi_1(x, y) = x$. De $D\varphi(\mathbb{R}^m) \cap \mathbb{R}^{n-m} = \{0\}$, se sigue que $D(\pi_1 \circ \varphi)(0)\mathbb{R}^m = \pi_1 \circ D\varphi(0)\mathbb{R}^m = \mathbb{R}^m$. Ahora, como $\varphi : \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ y $\pi_1 : \mathbb{R}^n \to \mathbb{R}^m$,
se tiene $\pi_1 \circ \varphi : \Omega \subset \mathbb{R}^m \to \mathbb{R}^m$ y $Df(0) : \mathbb{R}^m \to \mathbb{R}^M$ es sobreyectiva, por lo tanto $D(\pi_1 \circ \varphi)(0) : \mathbb{R}^m \to \mathbb{R}^m$ es un isomorfismo y por el Teorema de la Función Inversa, existe un abierto $\Omega' \subset \Omega$, con $0 \in \Omega'$, tal que $(\pi_1 \circ \varphi)/\Omega' \subset \mathbb{R}^m \to (\pi_1 \circ \varphi)(\Omega') \subset \mathbb{R}^m$ es un difeomorfismo C^r. Tomamos el abierto $\Omega' \subset \mathbb{R}^m$, con $0 \in \Omega'$, y h_1, \ldots, h_{n-m} las últimas $n-m$ funciones coordenadas de la aplicación $\tilde{h} = \varphi \circ (\pi_1 \circ \varphi)^{-1}$, es claro que $\tilde{h} \in C^r$ y que $\tilde{h}(U') = \varphi(\Omega')$, donde $U' = (\pi_1 \circ \varphi)(\Omega') \subset \mathbb{R}^m$ es abierto. Luego, $\tilde{h}(U')$ es un abierto de M y por definición de topología inducida existe un abierto $V \subset \mathbb{R}^n$ tal que $\varphi(\Omega') = \tilde{h}(U') = M \cap U$. Además, M es el gráfico de la aplicación C^r, $\tilde{h} = (h_1, \ldots, h_{n-m}) : U' \subset \mathbb{R}^m \to \mathbb{R}^{n-m}$.

(iv) \Rightarrow (iii) Sean $x \in M$ y $U \subset \mathbb{R}^n$ un abierto con $x = (x_1, \ldots, x_n) \in U$, y sea $U' \subset \mathbb{R}^m$ abierto, con $x' = (x_1, \ldots, x_m) \in U'$. Finalmente, sea $h = (h_1, \ldots, h_{n-m}) : U' \subset \mathbb{R}^m \to \mathbb{R}^{n-m}$ una aplicación de clase C^r, con $r \geq 1$, tal que $M \cap U = \text{graf}(h)$. Escribamos $\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^{n-m}$ y denotamos los puntos de \mathbb{R}^n por (u, v) con $u \in \mathbb{R}^m$ y $v \in \mathbb{R}^{n-m}$. Sea $V = U' \times \mathbb{R}^{n-m} \subset \mathbb{R}^n$, es claro que V es abierto y que $V \cap M = U' \cap M$. Definamos la aplicación C^r, $F : V \to \mathbb{R}^{n-m}$ por $F(u, v) = v - h(u)$, entonces $F^{-1}(0) = \{(u, v) \in V : F(u, v) = 0\} = \{(u, v) \in V : v = h(u)\} = \text{graf}(h)$. Ahora, dado $(z, w) \in \mathbb{R}^m \times \mathbb{R}^{n-m}$ se tiene que $DF(u, v)(z, w) = w - Dh(u)z$, donde $Dh(u) : \mathbb{R}^m \to \mathbb{R}^{n-m}$. Luego, dado $\eta \in \mathbb{R}^{n-m}$ eligiendo $w \in \mathbb{R}^{n-m}$ como el vector $\eta + Dh(u)z$ tenemos $DF(u, v)(z, w) = \eta + Dh(u)z - Dh(u)z = \eta$, es decir, $F : V \to \mathbb{R}^{n-m}$ es una submersión C^r.

Otra manera de ver que F es submersión es la siguiente. Tenemos que $F : V \subset \mathbb{R}^n \to \mathbb{R}^{n-m}$ es dada por $F(u, v) = v - h(u)$, donde $h : U \subset \mathbb{R}^m \to \mathbb{R}^{n-m}$. Luego, para $u \in U$ y $v \in \mathbb{R}^{n-m}$ arbitrarios, la
matriz jacobiana de F viene dada por

$$JF(u,v) = \begin{pmatrix} -Jh(u)(n-m) & \times \times \times n \end{pmatrix}$$

la cual evidentemente tiene rango $n - m$, por lo tanto $DF(u,v)$ es sobreyectiva.

La siguiente figura muestra superficies obtenidas como imagen inversa de valores regulares para la aplicación $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ definida por $f(x, y, z) = (1 - x^2 - y^2)z$

Observaciones.

1. Sea $M \subset \mathbb{R}^n$ una superficie de dimensión m y clase C^r ($r \geq 1$).
 Para simplificar la notación, escribiremos simplemente M^m para indicar la superficie y el exponente m indicará su dimensión.

2. En (v) las dos condiciones, inmersión y homeomorfismo, son esenciales. Por ejemplo, tomemos $\Omega = \mathbb{R}$ y $\varphi : \mathbb{R} \rightarrow \mathbb{R}^2$ dada por $\varphi(t) = (t^2, t^3)$, es claro que φ es un homeomorfismo C^∞ desde \mathbb{R} en $\varphi(\mathbb{R}) \subset \mathbb{R}^2$, pero no es una inmersión, pues $\frac{d\varphi(0)}{dt} = (0, 0)$. Desde la traza de φ en \mathbb{R}^2 se ve fácilmente que $\varphi(\mathbb{R})$ no es una superficie en \mathbb{R}^2.
Para otro ejemplo consideramos la aplicación $\psi : \mathbb{R} \to \mathbb{R}^3$, $\psi(t) = (\cos(t\sqrt{2}) (2 + \cos(t\sqrt{2})), \sin(t\sqrt{2}) (2 + \cos(t\sqrt{2})), \sin(t))$. Es fácil ver que ψ es una inmersión de clase C^∞, pero no es homeomorfismo sobre su imagen, la cual está contenida en el toro $T^2 \subset \mathbb{R}^3$,

$$T^2 = \{ (\cos(t) (2 + \cos(s)), \sin(t) (2 + \cos(s)), \sin(s)) \in \mathbb{R}^3 : s, t \in \mathbb{R} \}.$$

Indicación. Pruebe que $T^2 \subset \mathbb{R}^3$ es una superficie de dimensión 2 y de clase C^∞ de \mathbb{R}^3, y que $\psi(\mathbb{R})$ es denso en T^2.

Un ejemplo más sencillo de una inmersión inyectiva que no es homeomorfismo sobre su imagen es dado por la aplicación $\varphi :]-1, \infty[\to \mathbb{R}^2$ definida por $\varphi(t) = (t^3 - t, t^2)$. Claramente, φ, es continua e inyectiva, por lo tanto es una biyección sobre su imagen $\varphi(\mathbb{R})$ (vea la figura abajo)

Ahora, sean $(u_n)_{n \in \mathbb{N}}$ y $(v_n)_{n \in \mathbb{N}}$ sucesiones como en la figura, con

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} v_n = (0, 1).$$

Se tiene que $\lim_{n \to \infty} \varphi^{-1}(u_n) = 1$ y $\lim_{n \to \infty} \varphi^{-1}(v_n)0 = -1$, esto muestra que $\varphi^{-1} : \varphi(\mathbb{R}) \to]-1, \infty[$ no puede ser continua.
7.1 Ejemplos de Superficies

1. Superficies de dimensión \(n\) en \(\mathbb{R}^n\). Un subconjunto \(M\) de \(\mathbb{R}^n\) es superficie de dimensión \(n\) si, y sólo si, es un subconjunto abierto de \(\mathbb{R}^n\).

En efecto, si \(M\) es un subconjunto abierto de \(\mathbb{R}^n\) entonces basta tomar una única parametrización \(\varphi : M \rightarrow M\) dada por \(\varphi = I_M\), aplicación identidad de \(M\). Recíprocamente, supongamos que \(M\) es una superficie de clase al menos \(C^1\). Sea \(p \in M\), y sea \(\varphi : U_0 \subset \mathbb{R}^n \rightarrow U \subset M\) una parametrización con \(p = \varphi(x_0)\). Como para todo \(x \in U_0\) la aplicación lineal \(D\varphi(x) : \mathbb{R}^n \rightarrow \mathbb{R}^n\) es inyectiva, se sigue que \(D\varphi(x)\) es un isomorfismo, luego por el Teorema de la Función Inversa, \(\varphi\) es un difeomorfismo local de clase \(C^1\) desde una vecindad \(W_0\) de \(x_0\) en una vecindad de \(p = \varphi(x_0)\). Restringiendo \(\varphi\) a \(W_0\) se tiene que \(\varphi/W_0 : W_0 \rightarrow \varphi(W_0)\) es un difeomorfismo, por lo tanto \(\varphi(W_0)\) es un conjunto abierto de \(\mathbb{R}^n\), y como \(M\) es la unión de las vecindades parametrizadas de sus puntos, concluimos que \(M\) es un conjunto abierto en \(\mathbb{R}^n\).

Nota. Lo anterior también vale para superficies de clase \(C^0\), pero la prueba no la haremos, pues depende del Teorema de Brouwer sobre la Invariancia de los Dominiios.

2. En el otro extremo, respecto de la dimensión de una superficies, tenemos las superficies de dimensión cero.

Afirmación. Sea \(M \subset \mathbb{R}^n\). Entonces \(M\) es una superficie de dimensión cero si, y sólo si, \(M\) es un conjunto de puntos aislados.

La prueba de esta afirmación es fácil y se deja al lector.
3. Gráficos de aplicaciones diferenciables. Sea $U \subset \mathbb{R}^m$ un conjunto abierto, y sea $f : U \to \mathbb{R}^n$ una aplicación de clase C^k, su gráfico es el conjunto $\text{graf}(f) = \{(x, f(x)) \in \mathbb{R}^m \times \mathbb{R}^n : x \in U\}$.

Afirmamos que $M = \text{graf}(f)$ es una superficie de clase C^k y dimensión m contenida en $\mathbb{R}^m \times \mathbb{R}^n$.

En efecto, basta considerar una única parametrización $\varphi : U \to M$ dada por $\varphi(x) = (x, f(x))$, la cual es de clase C^k y $D\varphi(x) = (I, Df(x))$ es inyectiva. Ahora sea $\pi_1 : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m$ la proyección en la primera coordenada, $\pi_1(x, y) = x$. Es claro que π_1 es continua y $(\pi_1|M) \circ \varphi(x) = x$ y que $\varphi \circ (\pi_1|M)(x, f(x)) = (x, f(x))$. Por lo tanto, φ es un homeomorfismo sobre su imagen, cuya inversa es $\pi_1|M$. Como ejercicio el lector puede construir ejemplos considerando aplicaciones conocidas.

Afirmamos que f es de clase C^k si, y sólo si, $M = \text{graf}(f)$ es una superficie de clase C^k.

En efecto, si f es de clase C^k ya mostramos que $M = \text{graf}(f)$ es una superficie de clase C^k.

Recíprocamente, supongamos que en $M = \text{graf}(f)$ existe un abierto V para el cual existe una parametrización $\xi : U_0 \subset \mathbb{R}^m \to V$ de clase C^{k+1}. Ahora sea $\varphi : U \subset \mathbb{R}^m \to M$ la parametrización $\varphi(x) = (x, f(x))$ anterior. Sea $W_0 = \pi_1(V)$, es claro que $W_0 \subset U$ es un conjunto abierto. Consideremos $y_0 \in U_0$ y $x_0 \in W_0$ tales que $\xi(y_0) = \varphi(x_0)$. Tenemos que $\pi_1 \circ \xi = (\pi_1|M) \circ \xi : U_0 \to W_0$ es un homeomorfismo de clase C^{k+1}. Ahora, tenemos $\varphi \circ (\pi_1 \circ \xi)(u) = \xi$ y derivando esta igualdad nos queda $D\varphi(\pi_1(\xi(u))) \circ D(\pi_1 \circ \xi)(u) = D\xi(u)$ para cada $u \in U_0$, como las derivadas $D\varphi(x)$ y $D\xi(y)$ son inyectivas, se sigue que $D(\pi_1 \circ \xi)(u) : \mathbb{R}^m \to \mathbb{R}^m$ es una aplicación
lineal inyectiva, por lo tanto un isomorfismo, del Teorema de la Función Inversa concluimos que \(\pi_1 \circ \xi : U_0 \to W_0 \) es un difeomorfismo local de clase \(C^{k+1} \), esto es, existen abiertos \(U_1 \subset U_0 \) y \(W_1 \subset W_0 \) tal que \(\pi_1 \circ \xi : U_1 \to W_1 \) es un difeomorfismo \(C^{k+1} \). Como \(\varphi/W_1 = \xi \circ (\pi_1 \circ \xi)^{-1} \), se sigue que \(\varphi \) es de clase \(C^{k+1} \) en el abierto \(W_1 \), luego \(\varphi(x) = (x, f(x)) \) es de clase \(C^{k+1} \), y por lo tanto \(M = \text{graf}(f) \) es de clase \(C^{k+1} \), lo cual termina la prueba.

Considerando aplicaciones de clase \(C^k \) pero no de clase \(C^{k+1} \) podemos construir superficies de clase \(C^k \) pero no de clase \(C^{k+1} \). Por ejemplo, dado \(k \geq 1 \) sea \(f_k : \mathbb{R} \to \mathbb{R} \) definida por

\[
f_k(x) = \begin{cases}
x^k & \text{si } x > 0 \\
0 & \text{si } x \leq 0.
\end{cases}
\]

Es fácil ver que \(f_k \) es \(C^{k-1} \) pero no \(C^k \).

Otro ejemplo simple, es dado por funciones \(f : \mathbb{R} \to \mathbb{R} \) del tipo \(f(x) = x^{(k+1)/k} \), estas funciones son de clase \(C^1 \) pero no son \(C^2 \).

4. Sean \(M^m \subset \mathbb{R}^\ell \) y \(N^n \subset \mathbb{R}^p \) superficies de clase \(C^r \) (\(r \geq 1 \)). Entonces \(M \times N \subset \mathbb{R}^{\ell+p} \) es una superficie de clase \(C^r \) y dimensión \(m + n \).

En efecto, sean \(\varphi : \Omega_1 \subset \mathbb{R}^m \to \mathbb{R}^\ell \) y \(\psi : \Omega_2 \subset \mathbb{R}^n \to \mathbb{R}^p \) parametrizaciones \(C^r \) de \(M \) y \(N \), respectivamente, entonces la aplicación \(\varphi \times \psi : \Omega_1 \times \Omega_2 \subset \mathbb{R}^{m+n} \to \mathbb{R}^{\ell+p} \) dada por \((\varphi \times \psi)(x, y) = (\varphi(x), \psi(y)) \) es una parametrización de \(M \times N \).

Usando esta construcción y los ejemplos dados (arriba y a seguir) se pueden construir muchos ejemplos de superficies.

5. Consideremos la esfera unitaria \(S^n \subset \mathbb{R}^{n+1} \), la cual es dada por
\[S^n = \left\{ x = (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x_i^2 = 1 \right\}. \]

Este ejemplo es interesante, pues podemos demostrar de varios modos diferentes que es una superficie.

Afirmación: \(S^n \) es una superficie de codimensión 1 y clase \(C^\infty \) contenida en \(\mathbb{R}^{n+1} \).

Primera forma. Consideremos la función \(f : \mathbb{R}^{n+1} \to \mathbb{R} \) dada por \(f(x_1, \ldots, x_{n+1}) = x_1^2 + \cdots + x_{n+1}^2 - 1 \), es claro que \(f \) es \(C^\infty \) y que \(S^n = f^{-1}(0) \). Por otra parte \(df(x_1, \ldots, x_{n+1}) = 2x_1dx_1 + \cdots + 2x_{n+1}dx_{n+1} \neq 0 \) si \((x_1, \ldots, x_{n+1}) \neq (0, \ldots, 0) \); como \(0 \notin S^n \), las formas \(dx_i \) \((i = 1, \ldots, n + 1) \) son linealmente independientes, consecuentemente \(S^n \subset \mathbb{R}^{n+1} \) es una superficie de codimensión 1 y clase \(C^\infty \).

Segunda forma. Vamos construir \(2n + 2 \) parametrizaciones para \(S^n \).

Sean \(H^\pm_i = \{ x \in \mathbb{R}^{n+1} : (\pm 1)x_i > 0 \} \). Claramente los conjuntos \(H^\pm_i \) son subconjuntos abiertos de \(\mathbb{R}^{n+1} \). Definamos los conjuntos \(U^\pm_i = S^n \cap H^\pm_i \), estos son subconjuntos abiertos de \(S^n \). Sea \(B(0; 1) = \{ y \in \mathbb{R}^n : \|y\| < 1 \} \) la bola unitaria abierta centrada en el origen de \(\mathbb{R}^n \). Ahora definimos \(2n + 2 \) parametrizaciones como sigue: sean \(\varphi^\pm_i : B(0; 1) \to U^\pm_i \) dadas por \(\varphi^\pm_i(x_1, \ldots, x_n) = (x_1, \ldots, x_{i-1}, \pm \sqrt{1 - \|x\|^2}, x_i, \ldots, x_n) \), esas aplicaciones \(\varphi^\pm_i \) son de clase \(C^\infty \). Sus inversas son las restricciones a \(U^\pm_i \) de las proyecciones \(\pi_i : \mathbb{R}^{n+1} \to \mathbb{R}^n \) dadas por \(\pi_i(x_1, \ldots, x_i, \ldots, x_{n+1}) = (x_1, \ldots, \hat{x}_i, \ldots, x_{n+1}) \), donde \(\hat{\cdot} \) significa que omitimos esa coorde-
Tercera forma. Construiremos dos parametrizaciones, dadas por las inversas de las proyecciones esterográficas.

Sean \(U_N = \mathbb{S}^n - \{p_N\} \) y \(U_S = \mathbb{S}^n - \{p_S\} \), donde \(p_N = (0, \ldots, 0, 1) \) y \(p_S = (0, \ldots, 0, -1) \), son los polos norte y sur de la esfera, respectivamente. Definamos las aplicaciones \(P_N : U_N \to \mathbb{R}^n \) y \(P_S : U_S \to \mathbb{R}^n \), llamadas proyecciones esterográficas norte y sur, respectivamente, por

\[
P_N(x_1, \ldots, x_{n+1}) = \left(\frac{x_1}{1 - x_{n+1}}, \ldots, \frac{x_n}{1 - x_{n+1}} \right)
\]

\[
P_S(x_1, \ldots, x_{n+1}) = \left(\frac{x_1}{1 + x_{n+1}}, \ldots, \frac{x_n}{1 + x_{n+1}} \right),
\]

sus inversas \(\varphi_N : \mathbb{R}^n \to U_N \) y \(\varphi_S : \mathbb{R}^n \to U_S \) son las parametrizaciones que buscamos, esta vienen dadas por,

\[
\varphi_N(x_1, \ldots, x_n) = \left(\frac{2x_1}{1 + \|x\|^2}, \ldots, \frac{2x_n}{1 + \|x\|^2}, \frac{\|x\|^2 - 1}{1 + \|x\|^2} \right)
\]

\[
\varphi_S(x_1, \ldots, x_n) = \left(\frac{2x_1}{1 + \|x\|^2}, \ldots, \frac{2x_n}{1 + \|x\|^2}, \frac{1 - \|x\|^2}{1 + \|x\|^2} \right).
\]

Haremos la construcción para \(\varphi_N \), para \(\varphi_S \) es análoga. La aplicación \(P_N(x) \) está definida por la intersección de la recta que pasa por los puntos \(p_N = (0, \ldots, 0, 1) \) y \(x \) con el plano \(\mathbb{R}^n \times \{0\} \).
La ecuación de la recta es dada por \(tx + (1 - t)p_N \), con \(t \in \mathbb{R} \). Desarrollando nos queda \((tx_1, \ldots, tx_{n+1} + 1 - t) \), \(t \in \mathbb{R} \). Intersectar esta recta con \(\mathbb{R}^n \times \{0\} \) significa hacer la última coordenada \(tx_{n+1} + 1 - t \) igual a 0, despejando \(t \) obtenemos \(t = \frac{1}{1-x_{n+1}} \), reemplazando este valor de \(t \) en la ecuación de la recta, y omitiendo la última coordenada, que es igual a cero, obtenemos que

\[
P_N(x_1, \ldots, x_{n+1}) = \left(\frac{x_1}{1-x_{n+1}}, \ldots, \frac{x_n}{1-x_{n+1}} \right).
\]

Para encontrar \(\varphi_N \) consideremos un punto \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) e identificamos este con el punto \(x = (x_1, \ldots, x_n, 0) \in \mathbb{R}^n \times \{0\} \).

La recta que pasa por \(x \) y \(p_N \) viene dada por \((tx_1, \ldots, tx_n, 1-t) \), \(t \in \mathbb{R} \). Intersectando esta recta con \(S^n \) obtenemos la ecuación \(t^2(x_1^2 + \cdots + x_n^2) + (1-t)^2 = 1 \), desarrollando nos queda \(t^2(x_1^2 + \cdots + x_n^2 + 1) - 2t = 0 \), de aquí tenemos que o bien \(t = 0 \) o bien \(t = \frac{2}{1 + ||x||^2} \). El valor \(t = 0 \) se descarta pues para este valor nos queda el polo norte \(p_N \). Reemplazando el otro valor de \(t \) en la ecuación anterior nos queda

\[
\varphi_N(x_1, \ldots, x_n) = \left(\frac{2x_1}{1 + ||x||^2}, \ldots, \frac{2x_n}{1 + ||x||^2}, \frac{||x||^2 - 1}{1 + ||x||^2} \right).
\]

Las restantes verificaciones son dejadas como ejercicio al lector.
6. Vamos a demostrar que el elipsoide $E = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\}$ es una superficie 2–dimensional de clase C^∞ de dos maneras distintas. El lector puede buscar otras formas de demostrar esto.

Primera Forma: Valores regulares.

Sea $f : \mathbb{R}^3 \to \mathbb{R}$ definida por $f(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1$, es claro que f es de clase C^∞ y que $f^{-1}(0) = E$. Por lo tanto, sólo debemos demostrar que $0 \in \mathbb{R}$ es un valor regular de f. Para ver esto, tenemos que

$$Jf(x, y, z) = \left(\frac{2x}{a^2}, \frac{2y}{b^2}, \frac{2z}{c^2}\right)$$

Luego, $Df(x, y, z) \neq 0$ para todo $(x, y, z) \neq 0$ y como $Df(x, y, z) : \mathbb{R}^3 \to \mathbb{R}$, se tiene que la aplicación $Df(x, y, z)$ es sobreyectiva para todo $(x, y, z) \in E$. Luego, $0 \in \mathbb{R}$ es un valor regular de f y en consecuencia E es la imagen inversa de un valor regular, por lo tanto E es una superficie de clase C^∞ y dimensión $\dim E = 3 - 1 = 2$, como queríamos mostrar.

Segunda Forma: Parametrizaciones.

Para construir parametrizaciones para E, consideraremos los conjuntos

$$V_1 = \{(y, z) \in \mathbb{R}^2 : -c \sqrt{1 - \frac{y^2}{b^2}} < z < c \sqrt{1 - \frac{y^2}{b^2}}, -b < y < b\}$$

$$V_2 = \{(x, z) \in \mathbb{R}^2 : -c \sqrt{1 - \frac{x^2}{a^2}} < z < c \sqrt{1 - \frac{x^2}{a^2}}, -a < x < a\}$$

$$V_3 = \{(x, y) \in \mathbb{R}^2 : -b \sqrt{1 - \frac{x^2}{a^2}} < y < b \sqrt{1 - \frac{x^2}{a^2}}, -a < x < a\}$$
y sean

\[H^+_i = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_i > 0\} \]

\[H^-_i = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_i < 0\}, \ i = 1, 2, 3. \]

Tenemos \(U^\pm_i = H^\pm_i \cap E \) son abiertos en \(E \) y \((0,0) \in V_1\). Definamos \(\varphi^+_1 : V_1 \to U^+_1 \) por \(\varphi^+_1(y,z) = \left(\pm a \sqrt{1 - \frac{y^2}{b^2} - \frac{z^2}{c^2}}, y, z \right) \).

Tenemos que \(\varphi^+_1(0,0) = (a,0,0) \in U_1 \subset M \). Vamos a probar que \(\varphi^+_1 \) es una parametrización, para lo cual debemos demostrar que primero que \(\varphi^+_1 \) es un homeomorfismo desde \(V_1 \) sobre \(U^+_1 \subset E \).

Claramente, \(\varphi^+_1 \) es inyectiva, y sobreyectiva sobre su imagen. Además, es inmediato ver que \(\varphi^+_1 \) es continua, y su inversa \((\varphi^+_1)^{-1} : U^+_1 \to V_1 \) viene dada por \((\varphi^+_1)^{-1}(x_1,x_2,x_3) = (x_2,x_3) \), y siendo esta aplicación la restricción \(E \) de una proyección se sigue que es continua. Por lo tanto \(\varphi^+_1 : V_1 \to U^+_1 \) es un homeomorfismo.

Ahora debemos demostrar que \(\varphi^+_1 \) es inmersión. Tenemos que

\[
J\varphi^+_1(y,z) = \left(\begin{array}{ccc}
-\frac{y}{b^2} \cdot \frac{1}{\sqrt{1 - \frac{y^2}{b^2} - \frac{z^2}{c^2}}} & -\frac{z}{c^2} \cdot \frac{1}{\sqrt{1 - \frac{y^2}{b^2} - \frac{z^2}{c^2}}} \\
1 & 0 \\
0 & 1
\end{array} \right)
\]

luego, tomando la submatriz \(A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \), para la cual se tiene que \(\det(A) \neq 0 \), de donde \(\dim \ker(D\varphi^+_1(0,0)) = 2 \), por lo tanto \(D\varphi^+_1(y,z) \) es inyectiva.
Observación. Se puede repetir las construcciones de proyecciones esterográficas hechas para la esfera en el caso del elipsoide. Los detalles quedan a cargo del lector.

7. **Banda de Möbius.** La banda de Möbius es la superficie mostrada en la figura las siguiente.

Para parametrizar la banda de Möbius, consideremos las aplicaciones \(\delta, \gamma : \mathbb{R} \rightarrow \mathbb{R}^3 \) definidas por \(\gamma(t) = (\cos(t), \sin(t), 0) \) y \(\delta(t) = (\cos(t/2) \cos(t), \cos(t/2) \sin(t), \sin(t/2)) \). Definamos \(f :]0, 1[\rightarrow \mathbb{R}^3 \) por \(f(s, t) = \gamma(t) + (s-1/2)\delta(t) = ((1+(1-s/2) \cos(t/2)) \cos(t), (1+(1-s/2) \cos(t/2)) \sin(t), (1-s/2) \sin(t)) \). La imagen \(M = f([0, 1[\times \mathbb{R}) \subset \mathbb{R}^3 \) es la banda de Möbius. Denotemos por \(J =]0, 1[\), sea \(I \subset \mathbb{R} \) cualquier intervalo de longitud, \(|I| \), menor que \(2\pi \). Entonces se tiene que \(\varphi = f/(J \times I) : J \times I \rightarrow \varphi(J \times I) \subset M \) es una parametrización de clase \(C^\infty \) para la banda de Möbius. Esta parametrización no cubre toda la banda de Möbius, el lector puede encontrar las restantes parametrizaciones.

8. **Toro** \(\mathbb{T}^2 \subset \mathbb{R}^3 \). El toro \(\mathbb{T}^2 \) es construido geométricamente como sigue. Sea \(\mathbb{T}^2 = \{(x, y, z) \in \mathbb{R}^3 : (x^2+y^2+z^2-10)^2+36z^2 = 36\} \).
Este conjunto es obtenido al hacer rotar sobre un círculo de radio 3 en torno al origen en el plano xy un círculo de radio 1 en el plano xz. Sean $\varphi_1 :]0, 2\pi[\times]0, 2\pi[\rightarrow \mathbb{R}^3$, $\varphi_2 :]\varepsilon, 2\pi[\times]0, 2\pi[\rightarrow \mathbb{R}^3$, $\varphi_3 :]0, 2\pi[\times]\varepsilon, 2\pi + \varepsilon[\rightarrow \mathbb{R}^3$, y así sucesivamente, de este modo se definen 6 parametrizaciones (las tres restantes se dejan al lector), donde $\varphi_1(\phi, \theta) = ((3 + \cos(\phi)) \cos(\theta), (3 + \cos(\phi)) \sin(\theta), \sin(\phi))$ y $\varphi_j(\phi, \theta) = \varphi_1(\phi, \theta)$, para $j = 1, \ldots, 6$. Es fácil ver que las imágenes de estas parametrizaciones cubren el toro T^2. (completar detalles está a cargo del lector.)

9. **Botella de Klein** $K^2 \subset \mathbb{R}^4$.

Sean $ox, oy, oz y ow$ los cuatro ejes coordenados en \mathbb{R}^4. Consideremos un círculo C de radio $r > 0$ contenido en el plano xoz con centro en un punto c del eje ox, situado a una distancia $a > r$ desde el origen.

La botella de Klein, K^2, es la superficie obtenida por la rotación del círculo C, de modo que cuando C describe un ángulo u en el plano xoy el plano del círculo C describe una rotación de ángulo $u/2$ en torno a oc en el espacio oc, oz, ow. Sean $U_1 =$
]0, 2\pi[\times]0, 2\pi[\subset \mathbb{R}^2 y \quad \varphi_1 : U_1 \rightarrow \mathbb{R}^4 \text{ definida por}

\varphi_1(u, v) = ((a + r \cos(v)) \cos(u), (a + r \cos(v)) \sin(u), r \sin(v) \cos(u/2), r \sin(v) \sin(u/2)).

Es fácil ver que \(\varphi_1 \) es una parametrización de clase \(C^\infty \), y que \(\varphi_1(U_1) \) contiene todos los puntos de la botella de Klein, excepto aquellos sobre los círculos \(u = 0 \) y \(v = 0 \). Por ejemplo, vamos a mostrar que \(\varphi_1 \) es inyectiva. Supongamos primero que \(z \neq 0 \). Entonces \(v \neq 0 \) y \(\cos(u/2) \neq 0 \). Como \(0 < u/2 < \pi \), la expresión \(w/2 = \tan(u/2) \) determina \(u \). Conociendo \(u \), las ecuaciones

\[
\cos(v) = \sqrt{x^2 + y^2 - a} \quad y \quad \sin(v) = \frac{w}{r \cos(u/2)}
\]

determinan \(v \). Por otra parte, si \(z = 0 \), se tiene que \(v = \pi \) o \(u = \pi \), y de nuevo se ve que \(\varphi_1 \) es inyectiva. Luego \(\varphi_1 : U_1 \rightarrow \varphi_1(U_1) \)

es biyectiva. Los restantes casos se dejan a cargo del lector.

La figura abajo muestra una representación de la botella de Klein inmersa en \(\mathbb{R}^3 \), pues tiene autointersecciones, que la superficie
original en \mathbb{R}^4 no tiene.

10. **Toro** $T^n \subset \mathbb{R}^{2n}$. Sea $S^{1/\sqrt{n}} \subset \mathbb{R}^2$ el círculo centrado en el origen y radio $1/\sqrt{n}$, es decir, $S^{1/\sqrt{n}}$ es definido por la ecuación, $x^2 + y^2 = 1/n$. Definimos $T^n = S^{1/\sqrt{n}} \times \cdots \times S^{1/\sqrt{n}}$ n-veces. Entonces, $T^n \subset \mathbb{R}^{2n}$, es una superficie de dimensión n y clase C^∞ contenida en \mathbb{R}^{2n+2}, de hecho se tiene que T^n está contenida en S^{2n-1}.

En efecto, T^n es definido por las n ecuaciones,

$$x_1^2 + x_2^2 = \frac{1}{n}, \quad x_3^2 + x_4^2 = \frac{1}{n}, \quad \ldots, \quad x_{2n-1}^2 + x_{2n}^2 = \frac{1}{n}.$$

Sumando de estas n ecuaciones, tenemos

$$x_1^2 + x_2^2 + \cdots + x_{2n-1}^2 + x_{2n}^2 = 1,$$

luego $T^n \subset S^{2n-1}$ y como en el ejemplo anterior se prueba la afirmación.
Si tomamos un círculo de radio 1, \(S^1 \subset \mathbb{R}^2 \) y definimos \(T^n = S^1 \times \cdots \times S^1 \) (\(n \)-veces) entonces \(T^n \subset S^{2n-1} \sqrt{n} \), donde \(S^{2n-1} \sqrt{n} \) es la esfera de centro en el origen y radio \(\sqrt{n} \) en \(\mathbb{R}^{2n} \).

11. **Grupo de las matrices invesibles.** \(\text{GL}(\mathbb{R}^n) = \{ A \in M(n \times n, \mathbb{R}) : \det(A) \neq 0 \} \) es un conjunto abierto en \(M(n \times n, \mathbb{R}) \equiv \mathbb{R}^{n^2} \), luego es una superficie de dimensión \(n^2 \) y clase \(C^\infty \) en \(\mathbb{R}^{n^2} \).

12. **Grupo Ortogonal.** Sea \(O(n) = \{ A \in M(n \times n, \mathbb{R}) : AA^T = I \} \), donde \(A^T \) denota la transpuesta de la matriz \(A \). Afirmamos que \(O(n) \) es una superficie de dimensión \(n(n-1)/2 \) y clase \(C^\infty \) en \(\mathbb{R}^{n^2} \equiv M(n \times n, \mathbb{R}) \).

En efecto, consideremos el conjunto de las matrices simétricas y antisimétricas, \(S(n) = \{ A \in M(n \times n, \mathbb{R}) : A = A^T \} \) y \(A(n) = \{ A \in M(n \times n, \mathbb{R}) : A^T = -A \} \), respectivamente. Ambos conjuntos son subespacios vectoriales de \(M(n \times n, \mathbb{R}) \), con \(\dim S(n) = (n(n+1))/2 \) y \(\dim A(n) = (n(n-1))/2 \). Dada una matriz \(A \in M(n \times n, \mathbb{R}) \), se tiene,

\[
A+A^T \in S(n), \quad A-A^T \in A(n) \quad \text{y} \quad A = \frac{1}{2} (A+A^T) + \frac{1}{2} (A-A^T).
\]

Además, como \(S(n) \cap A(n) = \{ 0 \} \), se sigue que \(M(n \times n, \mathbb{R}) = S(n) \oplus A(n) \).

Definamos \(F : M(n \times n, \mathbb{R}) \to S(n) \equiv \mathbb{R}^{n(n+1)/2} \) por \(F(X) = XX^T \).

Tenemos que \(F \in C^\infty \) y \(DF(X)H = XX^T + HX^T \). Para mostrar que \(F \) es una submersión, dada una matriz \(S \in S(n) \), tomemos la matriz \(V = \frac{SX}{2} \), entonces

\[
DF(X)V = X \left(\frac{SX}{2} \right)^T + \frac{SX}{2}X^T = (XX^T) \frac{S}{2} + \frac{S}{2} (XX^T),
\]

Superficies en Espacios Euclideanos
luego para $X \in O(n)$ se tiene $DF(X)V = S$, esto es, para cada $X \in O(n)$ la derivada $DF(X) : \mathbb{R}^n \to \mathbb{R}^{\frac{n(n+1)}{2}}$ es sobreyectiva. Por lo tanto, $O(n) = F^{-1}(I)$ es una superficie de dimensión $n(n-1)/2$ y clase C^∞.

Note que $O(n)$ es compacto. En efecto, primero que nada es claro que $O(n)$ es cerrado por ser la imagen inversa del conjunto cerrado $\{I\} \subset \mathbb{R}^{\frac{n(n+1)}{2}}$ (I matriz identidad). Además, $O(n)$ está contenido en una esfera, pues si escribimos $A \in O(n)$ como

$$A = \begin{pmatrix}
 f_1 \\
 f_2 \\
 \vdots \\
 f_n
 \end{pmatrix}$$

donde $f_j = (a_{j1} \ a_{j2} \ \cdot \cdot \cdot \ a_{jn})$ es la fila j-ésima de A. Entonces tenemos que

$$\begin{pmatrix}
 f_1 \\
 f_2 \\
 \vdots \\
 f_n
 \end{pmatrix} (f_1 \ f_2 \ \cdot \cdot \cdot \ f_n) = I$$

de donde sigue que $(f_i, f_i) = ||f_i||^2 = 1$ y $\langle f_i, f_j \rangle = 0$ si $i \neq j$.

Por lo tanto, $\{f_1, \ldots, f_n\}$ es una base ortonormal de \mathbb{R}^n y se tiene en consecuencia que $O(n)$ es acotado. De hecho, hemos probado que $O(n) \subset S^{n-1}$.

También tenemos que $O(n)$ es disconexo, pues $O(n) = O^+(n) \cup O^-(n)$, donde $O^+(n) = \{A \in O(n) : \det(A) = \pm 1\}$. Es claro que $O^+(n) \cap O^-(n) = \emptyset$, y que ambos son conjuntos cerrados.
Finalmente, observemos que $O(n)$ es un subgruppo multiplicativo del grupo multiplicativo $\mathbb{GL}(\mathbb{R}^n) = \{ A \in M(n \times n, \mathbb{R}) : \det(A) \neq 0 \} = \det^{-1}(\mathbb{R} - \{0\})$, esto es, si $X, Y \in O(n)$ entonces $X \cdot Y$ y X^{-1} pertenecen a $O(n)$.

13. **Grupo especial lineal.** $SL(n) = \{ A \in \mathbb{GL}(\mathbb{R}^n) : \det(A) = 1 \} = \det^{-1}(1)$. Tenemos que $SL(n) \subset \mathbb{R}^{n^2}$ es una superficie de dimensión $n^2 - 1$ y clase C^∞.

En efecto, consideremos la aplicación $\det : M(n \times n, \mathbb{R}) \to \mathbb{R}$ que a cada matriz X asocia su determinante. Tenemos que \det es n-lineal en las filas (columnas), luego es de clase C^∞ y $D \det(X)H = \sum_{i=1}^{n} \det(X_1, \ldots, H_i, \ldots, X_n)$, donde $X = (X_1, \ldots, X_n)$ y $H = (H_1, \ldots, H_n)$ están escritas en su forma por filas (columnas). Observemos que para la matriz identidad, $I \in M(n \times n, \mathbb{R})$, se tiene $D \det(I)H = \sum_{i=1}^{n} \det(E_1, \ldots, H_i, \ldots, E_n) = \sum_{i=1}^{n} h_{ii} = \text{traza}(H)$, donde E_j es la j-ésima fila (columna) de I.

Denotemos por E_{rs} la matriz que tiene un 1 en el lugar (r, s) y 0 en los restantes lugares. Entonces el conjunto $\{ E_{rs} : 1 \leq r \leq n \, , \, 1 \leq s \leq n \}$ es una base para $M(n \times n, \mathbb{R})$. Dada una matriz $X \in M(n \times n, \mathbb{R})$, denotemos por X_{rs} la matriz $(n - 1) \times (n - 1)$ obtenida desde X eliminando su r–ésima fila y su s–ésima columna.

De lo anterior,

$$D \det(X)E_{rs} = \frac{\partial \det(X)}{\partial X_{rs}} = (-1)^{r+s} \det(X_{rs}).$$

Por lo tanto, dada una matriz $A \in \mathbb{GL}(\mathbb{R}^n)$ existe un menor A_{rs} de A, con $\det(A_{rs}) \neq 0$, por lo tanto $D \det(A) \neq 0$. De lo anterior se sigue que $D \det(A) : \mathbb{R}^{n^2} \to \mathbb{R}$ es sobreyectiva, para todo $A \in$
\(\mathbb{GL}(\mathbb{R}^n) \). En particular, para \(A \in S\mathcal{L}(n) \) se tiene que \(D \det(A) \) es sobreyectiva y por lo tanto \(S\mathcal{L}(n) = \det^{-1}(1) \) es una superficie de codimensión 1 y clase \(C^\infty \) en \(\mathbb{R}^{n^2} \).

Observación.

(a) Hemos usado el hecho que una aplicación lineal \(L : \mathbb{R}^k \to \mathbb{R} \) es la aplicación lineal nula o es sobreyectiva.

(b) Dadas \(X, Y \in S\mathcal{L}(n) \) entonces \(X \cdot Y \) y \(X^{-1} \) pertenecen a \(S\mathcal{L}(n) \), por lo tanto este es un subgrupo multiplicativo de \(\mathbb{GL}(\mathbb{R}^n) \).

14. Sea \(C \) una curva regular en el plano \(xz \) que no intersecta el eje \(z \). Supongamos que \(C \) está parametrizada por

\[
\begin{align*}
x &= f(v) \\
z &= g(v),
\end{align*}
\]

donde \(v \in [a, b] \) y \(f(v) > 0 \).

Al rotar la curva \(C \) alrededor del eje \(z \) obtenemos una superficie \(S \). Veremos a continuación cómo obtener parametrizaciones para \(S \).

Sea \(V = \{(u, v) \in \mathbb{R}^2 : 0 < u < 2\pi, a < v < b\} \) y definamos \(\varphi : V \to \mathbb{R}^3 \) por \(\varphi(u, v) = (f(v) \cos(u), f(v) \sin(u), g(v)) \). Afir-

mamos que \(\varphi \) es una parametrización para \(S \).

En efecto, primero veamos que \(\varphi \) es inyectiva. Si \(\varphi(u, v) = \varphi(\bar{u}, \bar{v}) \) entonces \((f(v) \cos(u), f(v) \sin(u), g(v)) = (f(\bar{v}) \cos(\bar{u}), f(\bar{v}) \sin(\bar{u}), g(\bar{v})) \), de donde \(g(v) = g(\bar{v}) \), lo cual implica que \(v = \bar{v} \), pues \(g \) es parametrización, por otra parte tenemos que \(f(v) \cos(u) = f(v) \cos(\bar{u}) \), lo cual implica que \(\cos(u) = \cos(\bar{u}) \) y \(\sin(u) = \sin(\bar{u}) \), de donde
se tiene que $u = \bar{u}$. Finalmente, como φ es sobreyectiva sobre su imagen, se tiene que φ es una biyección desde V sobre $U = S\varphi(V)$.

Ahora mostraremos que φ es una inmersión. Para ellos calculemos su jacobiano. Tenemos

$$J\varphi(u, v) = \begin{pmatrix} -f(v) \sin(u) & f'(v) \cos(u) \\ f(v) \cos(u) & f'(v) \sin(u) \\ 0 & g'(v) \end{pmatrix}$$

y tomando submatriz

$$A = \begin{pmatrix} f(v) \cos(u) & f'(v) \sin(u) \\ 0 & g'(v) \end{pmatrix}$$

se tiene que $\det(A) = f(v)g'(v) \cos(u)$, y como $f(v) > 0$ y $g'(v) \neq 0$ (C curva regular, lo cual significa que $g'(v) \neq 0$ y $f'(v) \neq 0$), tenemos que $\det(A) \neq 0$, por lo tanto $u \neq \frac{\pi}{2}$. Si $u = \frac{\pi}{2}$ elegimos la submatriz

$$A = \begin{pmatrix} -f(v) \sin(u) & f'(v) \cos(u) \\ 0 & g'(v) \end{pmatrix}.$$

Por lo tanto, en cualquier caso se tiene que $D\varphi(u, v)$ es una aplicación lineal inyectiva. Como φ es continua sólo nos falta probar que φ^{-1} es continua.

Un punto en S es dado fijando un valor de z y (x, y) en el plano xy con

$$\begin{cases} x^2 + y^2 = f^2(v) \\ z = g(v) \end{cases}$$
determinando de manera única el valor de \(u \) y \(v \).
Como \(\varphi(u, v) = (f(v) \cos(u), f(v) \sin(u), g(v)) \) se tiene que \(u = \varphi^{-1}(x, y, z) \) y \(v = \varphi_2^{-1}(x, y, z) \), y lo que nos resta por demostrar es que la función \(\varphi^{-1} \) es continua en las variables \((x, y, z)\).

Si \(u \neq \pi \) entonces

\[
\tan \left(\frac{u}{2} \right) = \frac{\sin \left(\frac{u}{2} \right)}{\cos \left(\frac{u}{2} \right)} = \frac{2 \sin(u/2) \cos(u/2)}{2 \cos^2(u/2)} = \frac{\sin(u)}{1 + \cos(u)} = \frac{y/f(v)}{1 + x/f(v)} = \frac{y}{x + \sqrt{x^2 + y^2}}
\]

luego \(u = 2 \tan^{-1} \left(\frac{y}{x + \sqrt{x^2 + y^2}} \right) \) es continua.

Si \(u = \pi \), en una vecindad pequeña de \(\pi \) se obtiene

\[
\cot \left(\frac{u}{2} \right) = \frac{\cos \left(\frac{u}{2} \right)}{\sin \left(\frac{u}{2} \right)} = \frac{2 \cos \left(\frac{u}{2} \right) \sin \left(\frac{u}{2} \right)}{2 \cos^2 \left(\frac{u}{2} \right)} = \frac{\sin(u)}{1 - \cos(u)} = \frac{y/f(v)}{1 - x/f(v)}
\]
\[y = \frac{y}{\sqrt{x^2 + y^2} - x} \]

luego \(u = 2\cotan^{-1}\left(\frac{y}{\sqrt{x^2 + y^2} - x}\right) \), por lo tanto \(u \) es una función continua de \((x, y, z)\), análogamente se tiene que \(v \) es una función continua de \((x, y, z)\), pues \(v \) es función continua de \(z \) y de \(\sqrt{x^2 + y^2} \), lo cual termina la prueba.

15. Sea \(S = \{ A \in M(3 \times 3, \mathbb{R}) : \text{rango}(A) = 1 \} \subset \mathbb{R}^9 \). Vamos a demostrar que \(S \) es una superficie de dimensión 5 y de \(C^\infty \).

En efecto, sean \((u, v, w)\) las filas de \(A \in M(3 \times 3, \mathbb{R}) \) donde \(u, v, w \in \mathbb{R}^3 \). De este modo tenemos que \(S \) es el conjunto de las matrices de \(3 \times 3 \) con dos filas linealmente dependientes, y podemos escribir \(S = U \cup V \cup W \), donde

a) \(U \) está formado por las matrices de \(3 \times 3 \) con la primera fila nula.

b) \(V \) está formado por las matrices de \(3 \times 3 \) con la segunda fila no nula.

c) \(W \) está formado por las matrices de \(3 \times 3 \) con la tercera fila no nula.

Sean \(U_0 = \mathbb{R}^3 - \{0\} \) y \(V_0 = U_0 \times \mathbb{R} \times \mathbb{R} \), definamos las aplicaciones \(\varphi : V_0 \rightarrow U \) por \(\varphi(v, t, \alpha) = (v, vt, \alpha v) \), \(\psi : V_0 \rightarrow V \) por \(\psi(v, t, \alpha) = (tv, v, \alpha v) \), y \(\xi : V_0 \rightarrow W \) por \(\xi(v, t, \alpha) = (tv, \alpha v, v) \).

Afirmamos que estas aplicaciones son parametrizaciones para \(S \), por simplicidad sólo mostraremos que \(\varphi \) es una parametrización, para \(\psi \) y \(\xi \) los argumentos son análogos.

Primero mostraremos que \(\varphi \) es biyectiva. Es claro que \(\varphi \) es inyectiva, y como es sobreyectiva sobre su imagen, se sigue que \(\varphi \) es
biyectiva. Ahora, un cálculo directo muestra que \(\varphi^{-1}(v, tv, \alpha v) = (v, t, \alpha) \), y como es claro que \(\varphi \) y \(\varphi^{-1} \) son continuas se sigue que \(\varphi \) es un homeomorfismo desde \(V_0 \) sobre su imagen. Ahora mostraremos \(\varphi \) es inmersión. Tenemos

\[
J\varphi(v_1, v_2, v_3, t, \alpha) = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
t & 0 & 0 & v_1 & 0 \\
0 & t & 0 & v_2 & 0 \\
0 & 0 & t & v_3 & 0 \\
s & 0 & 0 & 0 & v_1 \\
0 & s & 0 & 0 & v_2 \\
0 & 0 & s & 0 & v_3
\end{pmatrix}
\]

luego, tomando submatriz

\[
A = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
t & 0 & 0 & v_1 & 0 \\
s & 0 & 0 & 0 & v_1
\end{pmatrix}
\]

tenemos que \(\det(A) = v_1^2 \), y como \(v_1 \neq 0 \), \(v_2 \neq 0 \) o \(v_3 \neq 0 \), sin perdida de generalidad podemos suponer \(v_1 \neq 0 \) y así tenemos que \(\dim(\text{Im}D\varphi(v, t, \alpha)) = 5 \), de donde \(\dim(\ker(D\alpha(v, t, \alpha))) = 0 \), luego se tiene que \(D\varphi(v, t, \alpha) \) es inyectiva, como queríamos probar.

7.2 Aplicaciones Diferenciables

Para definir el concepto de aplicación diferenciable en superficies usaremos la caracterización \((v) \) del Teorema 2.1, esto es, haremos uso de
parametrizaciones. Primero probaremos un resultado que nos permitirá definir ese concepto.

Teorema 7.2 Sean $V_0 \subset \mathbb{R}^m$ un conjunto abierto y $\psi : V_0 \rightarrow V$ una parametrización de clase C^k de un conjunto $V \subset \mathbb{R}^n$. Si $U_0 \subset \mathbb{R}^\ell$ es un conjunto abierto y $f : U_0 \rightarrow \mathbb{R}^n$ es una aplicación de clase C^k, con $f(U_0) \subset V$. Entonces la compuesta $\psi^{-1} \circ f : U_0 \subset \mathbb{R}^\ell \rightarrow V_0 \subset \mathbb{R}^m$ es de clase C^k. Además, para cada $x \in U_0$ y $z = \psi^{-1} \circ f(x)$ tenemos que $D(\psi^{-1} \circ f)(x) = (D\psi(z))^{-1} \circ Df(x)$

Demostración. Como $\psi : V_0 \rightarrow V$ es una inmersión inyectiva C^k, por el Teorema de la Forma Local de las Inmersiones, para cada $p \in V$ existen un abierto Z en \mathbb{R}^n con $p \in Z$ y una aplicación $g : Z \rightarrow \mathbb{R}^m$ de clase C^r, tal que $g/(V \cap Z) = \psi^{-1}$. Como $f(U_0) \subset V$ tenemos $\psi^{-1} \circ f = g \circ f : f^{-1}(f(U_0) \cap Z) \subset \mathbb{R}^\ell \rightarrow \mathbb{R}^m$, luego $\psi^{-1} \circ f$ es de clase C^k.
Ahora escribamos $h = \psi^{-1} \circ f$, luego $\psi \circ h = f$ y $Df(x) = D(\psi \circ h)(x) = D\psi(h(x)) \circ Dh(x)$, de donde $Dh(x) = (D\psi(z))^{-1} \circ Df(x)$, esto es, $D(\psi^{-1} \circ f)(x) = (D\psi(z))^{-1} \circ Df(x)$, donde $z = h(x) = \psi^{-1} \circ f(x)$.

Corolario 7.3 Sean U_0 y V_0 subconjuntos abiertos de \mathbb{R}^m. Dadas parametrizaciones de clase C^k ($k \geq 1$), $\varphi : U_0 \to V$ y $\psi : V_0 \to V$ del conjunto $V \subset \mathbb{R}^n$, se tiene que el cambio de coordenadas $\xi = \psi^{-1} \circ \varphi$ es un difeomorfismo de clase C^k entre abiertos de \mathbb{R}^m.

Demostración. Basta tomar $f = \varphi$ en el teorema anterior, y se sigue que $\psi^{-1} \circ \varphi$ es de clase C^k. Por otra parte, como $\varphi^{-1} \circ \psi = (\psi^{-1} \circ \varphi)^{-1}$ se sigue el resultado.

Ejemplos.

1. Cambios de coordenadas en la botella de Klein $K^2 \subset \mathbb{R}^4$. Recordemos que si $U_1 = [0, 2\pi[\times [0, 2\pi[\subset \mathbb{R}^2$ y $\varphi_1 : U_1 \to \mathbb{R}^4$ dada por $\varphi_1(u,v) = (\varphi_1(u,v), \varphi_2(u,v), \varphi_3(u,v), \varphi_4(u,v))$, donde $\varphi_1(u,v) = (a + r \cos(v)) \cos(u)$, $\varphi_2(u,v) = (a + r \cos(v)) \sin(u)$, $\varphi_3(u,v) = r \sin(v) \cos(u/2)$, y $\varphi_4(u,v) = r \sin(v) \sin(u/2))$. Entonces φ es una parametrización de clase C^∞ para la botella de Klein, y que $\varphi_1(U_1)$ contiene todos los puntos de la botella de Klein, excepto
aquellos sobre los círculos \(u = 0 \) y \(v = 0 \). Sea \(U_2 = \{ (\bar{u}, \bar{v}) \in \mathbb{R}^2 : \frac{\pi}{4} < \bar{u} < \frac{9\pi}{4}, 0 < \bar{v} < 2\pi \} \), definamos la parametrización \(\varphi_2 : U_2 \rightarrow \mathbb{R}^4 \) por \(\varphi_2(\bar{u}, \bar{v}) = (- (r \cos(\bar{v}) + a) \cos(\bar{u}), (r \cos(\bar{v}) + a) \cos(\bar{u}), r \sin(\bar{v}) \cos(\bar{u}^2 + \frac{\pi}{4}), r \sin(\bar{v}) \sin(\bar{u}^2 + \frac{\pi}{4})) \). Geométricamente, esto significa que medimos \(\bar{u} \) desde el eje \(Oy \). Vemos que \(\varphi_2(U_2) \) incluye los puntos de la botella de Klein con \(u = 0 \). (se deja a cargo del lector verificar que \(\varphi_2 \) es una parametrización).

Ahora, \(\varphi_1(U_1) \cap \varphi_2(U_2) = W \) tiene dos componentes conexas \(W_1 = \{ \varphi_1(u, v) : \frac{\pi}{2} < u < 2\pi \} \) y \(W_2 = \{ \varphi_1(u, v) : 0 < u < \frac{\pi}{2} \} \).

El cambio de coordenadas \(\varphi_2^{-1} \circ \varphi_1(u, v) = (\bar{u}, \bar{v}) \) es dado por

\[
\varphi_2^{-1} \circ \varphi_1(u, v) = \begin{cases}
(u - \pi/2, v) & \text{en } W_1 \\
(u + 3\pi/2, 2\pi - v) & \text{en } W_2.
\end{cases}
\]

De modo similar podemos definir una aplicación inyectiva \(\varphi_3 : U_3 \rightarrow \mathbb{R}^4 \) cuya imagen cubre la botella de Klein menos el círculo \(v = 0 \). Como puede verificarse fácilmente los cambios de coordenadas \(\varphi_j^{-1} \circ \varphi_i \ (i, j = 1, 2, 3) \) son funciones de clase \(C^\infty \) y que Im(\(\varphi_1 \)) \(\cup \) Im(\(\varphi_2 \)) \(\cup \) Im(\(\varphi_3 \)) cubre la botella de Klein.

2. Plano Proyctivo real 2–dimensional, \(\mathbb{RP}^2 \). El plano proyectivo real 2–dimensional es el conjunto de todas las líneas rectas en \(\mathbb{R}^3 \) que pasan por el origen \((0,0,0) \) de \(\mathbb{R}^3 \), es decir, es el conjunto de las direcciones en \(\mathbb{R}^3 \).

Vamos a mostrar que \(\mathbb{RP}^2 \) es una superficie de clase \(C^\infty \). Para ello, definimos una relación de equivalencia en \(\mathbb{R}^3 - \{(0,0,0)\} \), como sigue: dos puntos \((x, y, z) \) y \((u, v, w) \) en \(\mathbb{R}^3 - \{(0,0,0)\} \) son equivalentes si existe \(\lambda \in \mathbb{R} - \{0\} \) tal que \((u, v, w) = \lambda (x, y, z) \). La clase de equivalencia de un punto \((x, y, z) \in \mathbb{R}^3 - \{(0,0,0)\} \) la
denotamos por \([x, y, z]\). Definamos los conjuntos
\[
V_1 = \{[(x, y, z)] : x \neq 0\},
\]
\[
V_2 = \{[(x, y, z)] : y \neq 0\},
\]
\[
V_3 = \{[(x, y, z)] : z \neq 0\},
\]
y las aplicaciones \(\varphi_i : \mathbb{R}^2 \to V_i \; (i = 1, 2, 3)\) por \(\varphi_1(u, v) = [(1, u, v)]\), \(\varphi_2(u, v) = [(u, 1, v)]\), y \(\varphi_3(u, v) = [(u, v, 1)]\).

Se tiene que \(\varphi_1(\mathbb{R}^2) \cup \varphi_2(\mathbb{R}^2) \cup \varphi_3(\mathbb{R}^2) = \mathbb{RP}^2\). Claramente, cada aplicación \(\varphi_i \; (i = 1, 2, 3)\) es inyectiva. Veamos las aplicaciones inversas \(\varphi_i^{-1} : V_i \to \mathbb{R}^2\),
\[
\varphi_1^{-1}([(x, y, z)]) = \frac{1}{x} (y, z), \quad [(x, y, z)] \in V_1 \; (x \neq 0)
\]
\[
\varphi_2^{-1}([(x, y, z)]) = \frac{1}{y} (x, z), \quad [(x, y, z)] \in V_2 \; (y \neq 0)
\]
\[
\varphi_3^{-1}([(x, y, z)]) = \frac{1}{z} (x, y), \quad [(x, y, z)] \in V_3 \; (z \neq 0).
\]
Para describir \(\varphi_i^{-1}(V_i \cap V_j)\) notamos que \(\varphi_1^{-1}(V_1 \cap V_2) = \{(u, v) \in \mathbb{R}^2 \; \text{con} \; u \neq 0\}\), el cual es un conjunto abierto de \(\mathbb{R}^2\). Análogamente se ve para los restantes casos. Ahora el cambio de coordenadas
\[
\varphi_2^{-1} \circ \varphi_1(u, v) = \varphi_2^{-1}([(1, u, v)])
\]
\[
= \varphi_2^{-1}([(1/u, 1, v/u)]) = (1/u, v/u),
\]
la cual es diferenciable de clase \(C^\infty\).

Esta construcción se generaliza de modo simple a \(\mathbb{R}^{n+1}\) para obtener el plano proyectivo \(n\)-dimensional \(\mathbb{RP}^n\). Esta construcción se deja a cargo del lector.
3. Se deja a cargo del lector, calcular los cambios de coordenadas de la esfera, usando las parametrizaciones φ_N y φ_S, así como también las parametrizaciones φ_i^\pm, dadas anteriormente.

Usando este corolario podemos definir la noción de aplicación diferenciable en superficies.

Definición 7.2 Sean $M^m \subset \mathbb{R}^k$ y $N^n \subset \mathbb{R}^\ell$ superficies de clase C^r.

Sea $f : M \to N$ una aplicación. Decimos que f es diferenciable en $p \in M$ si, existen parametrizaciones $\varphi : U_0 \to U \subset M$ con $p \in U$ y $\psi : V_0 \to V \subset N$ tales que $f(U) \subset V$ y $\psi^{-1} \circ f \circ \varphi : U_0 \subset \mathbb{R}^m \to V_0 \subset \mathbb{R}^n$ es diferenciable en $\varphi^{-1}(p)$. Decimos también que f es diferenciable en M si es f es diferenciable en cada punto de M. Finalmente, decimos que f es de clase C^r si $\psi^{-1} \circ f \circ \varphi$ es de clase C^r, para cada par de parametrizaciones como arriba.

En la definición anterior tenemos la elección de parametrizaciones, vamos a demostrar ahora que la diferenciabilidad de una aplicación no depende de la elección de las parametrizaciones.

Proposición 7.1 Sea $f : M^m \to N^n$ una aplicación diferenciable en $p \in M$, con respecto a parametrizaciones $\varphi : U_0 \subset \mathbb{R}^m \to U \subset M^m$ y $\psi : V_0 \subset \mathbb{R}^n \to V \subset N^n$, con $p \in U$ y $f(U) \subset V$. Dadas parametrizaciones $\varphi_1 : U_1 \subset \mathbb{R}^m \to U \subset M$ y $\psi : V_1 \subset \mathbb{R}^n \to V \subset N$, se tiene que f es diferenciable con respecto a estas nuevas parametrizaciones.

Demostración. Tenemos que $\psi_1^{-1} \circ f \circ \varphi_1 = \psi_1^{-1} \circ (\psi \circ \psi^{-1}) \circ f \circ (\varphi \circ \varphi^{-1}) \circ \varphi_1 = (\psi_1^{-1} \circ \psi) \circ (\psi^{-1} \circ f \circ \varphi) \circ (\varphi^{-1} \circ \varphi_1)$. Ahora como los cambios de coordenadas son aplicaciones diferenciables, y por hipótesis $\psi^{-1} \circ f \circ \varphi$ es diferenciable, se sigue el resultado.
Observación. Si $N \subset \mathbb{R}^\ell$ es un subconjunto abierto y $M^m \subset \mathbb{R}^p$ es una superficie. Entonces una aplicación $f : M \to N$ es de clase C^r si para cada parametrización $\varphi : U_0 \subset \mathbb{R}^m \to U \subset M$ se tiene que la aplicación $f \circ \varphi : U_0 \to \mathbb{R}^\ell$ es de clase C^r. (en este caso, simplemente usamos en N la parametrización $\psi = I/N$.)

Ejemplo. Sea $O_+(2)$ la componente conexa de $O(2)$ que contiene a la identidad. Tenemos que $O_+(2)$ es difeomorfo a S^1. En efecto, sea $X \in O_+(2)$, escribamos $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, tenemos que $XX^T = I$ y $\det(X) = ad - cd = 1$. De esto se sigue que $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + db & c^2 + d^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, luego $a^2 + b^2 = 1, c^2 + d^2 = 1$, $ac + db = 0$, y $ad - cb = 1$, de donde $a = \cos(\alpha)$ y $b = \sen(\alpha)$, $c = -b$, y $a = d$. Definamos $f : S^1 \to O_+(2)$ por $f(\cos(\alpha), \sen(\alpha)) = \begin{pmatrix} \cos(\alpha) & \sen(\alpha) \\ -\sen(\alpha) & \cos(\alpha) \end{pmatrix}$. Ahora es fácil verificar que f es un difeomorfismo C^∞. Los detalles se dejan a cargo del lector.

El siguiente resultado es consecuencia del correspondiente en espacios euclideanos.

Teorema 7.4 (Regla de la Cadena). Sean M^m, N^n y P^ℓ superficies de clase C^k, con $k \geq 1$. Sean $f : M \to N$ y $g : N \to P$ aplicaciones de clase C^k. Entonces la compuesta $g \circ f : M \to P$ es una aplicación de clase C^k.

Demostración. Sean $\varphi : U_0 \subset \mathbb{R}^m \to U \subset M$, $\psi : V_0 \subset \mathbb{R}^n \to V \subset N$, y $\xi : W_0 \subset \mathbb{R}^\ell \to W \subset P$ parametrizaciones tales que $f(U) \subset V$ y $g(V) \subset W$. Entonces $\xi^{-1} \circ (g \circ f) \circ \varphi = (\xi^{-1} \circ g \circ \psi) \circ (\psi^{-1} \circ f \circ \varphi)$, y como $\psi^{-1} \circ f \circ \varphi$ y $\xi^{-1} \circ g \circ \psi$ son diferenciables, se sigue el resultado.
7.3 Espacio Tangente

Una propiedad importante que tienen las superficies es que poseen aproximaciones lineales en cada uno de sus puntos, la cual es dada por su espacio tangente, el cual es un subespacio vectorial del espacio que contiene a la superficie, y su dimensión es igual a la dimensión de la superficie.

Definición 7.3 Sea $M^m \subseteq \mathbb{R}^n$ superficie m-dimensional de clase C^k, con $k \geq 1$. Dado $p \in M$, el espacio tangente a M en p, denotado por T_pM, es el subespacio vectorial m-dimensional de \mathbb{R}^n definido por $T_pM = D\varphi(x)\mathbb{R}^m$ (imagen de $D\varphi(x)$), donde $\varphi: U_0 \subseteq \mathbb{R}^m \to U \subset \mathbb{R}^n$ es una parametrización con $\varphi(x) = p$.

Es claro que T_pM es un subespacio vectorial m-dimensional de \mathbb{R}^n isomorfo a \mathbb{R}^m, pues siendo $D\varphi(x): \mathbb{R}^m \to \mathbb{R}^n$ es inyectiva, se sigue que $D\varphi(x): \mathbb{R}^m \to \text{Im}\,(D\varphi(x)) = T_{\varphi(x)}M$ es un isomorfismo.

Ejemplo. Si M es el gráfico de una aplicación C^k, $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$ entonces para cada $p = (x_0, f(x_0)) \in M$ tenemos que $T_pM = \text{graf}(Df(x_0)) = \{(v, Df(x_0)v) : v \in \mathbb{R}^m\}$.

En la definición de espacio tangente hemos fijado una parametrización (arbitraria). Ahora vamos a demostrar que la definición de espacio tangente no depende de la elección de una particular parametrización.

Proposición 7.2 Sea $M^m \subset \mathbb{R}^n$ una superficie de clase C^k, con $k \geq 1$, y sea $p \in M$. Dadas parametrizaciones $\varphi: U_0 \to V$ y $\psi: U_1 \to V$, donde $U_0, U_1 \subset \mathbb{R}^m$ son abiertos y $V \subset M$ es un abierto con $p \in V$, y $\varphi(x_0) = \psi(x_1) = p$ entonces $\text{Im}(D\varphi(x_0)) = \text{Im}(D\psi(x_1)) = T_pM$.

Demostración. Sabemos que el cambio de coordenadas $\xi = \psi^{-1} \circ \varphi$ es un difeomorfismo de clase C^k entre abiertos de \mathbb{R}^m y $\xi(x_0) = x_1$,
luego $Dξ(x_0)\mathbb{R}^m = \mathbb{R}^m$. Ahora, como $ψ\circ ξ = \varphi/\varphi^{-1}(V)$ derivando esta igualdad, tenemos $D\varphi(x_0) = Dψ(ξ(x_0)) \circ Dξ(x_0)$, y de aquí $T_pM = D\varphi(x_0)\mathbb{R}^m = Dψ(ξ(x_0)) \circ Dξ(x_0)\mathbb{R}^m = Dψ(x_1)\mathbb{R}^m$.

Ahora daremos una caracterización más geométrica del espacio tangente a una superficie.

Proposición 7.3 Sea $M^m \subset \mathbb{R}^n$ una superficie de clase C^k ($k \geq 1$). Dado $p \in M$, los elementos de T_pM son los vectores velocidad en 0 de los caminos diferenciables contenidos en M que pasan por p para $t = 0$, esto es,

$$T_pM = \{v \in \mathbb{R}^n : v = \frac{d\lambda}{dt}(0), \text{ con } \lambda :]-\varepsilon, \varepsilon[\to M \text{ diferenciable y } \lambda(0) = p \}.$$

Demostración. Por definición de espacio tangente, dado $v \in T_pM$ existe una parametrización $\varphi : U_0 \subset \mathbb{R}^m \to V \subset M$ con $\varphi(x) = p$ tal que

$$v = D\varphi(x)u = \lim_{t \to 0} \frac{\varphi(x + tu) - \varphi(x)}{t},$$

donde $u \in \mathbb{R}^m$. Elegimos $\varepsilon > 0$ suficientemente pequeño de modo que la imagen del camino $\alpha :]-\varepsilon, \varepsilon[\to \mathbb{R}^m$ dado por $\alpha(t) = x + tu$ está contenida en U_0. Tenemos entonces que el vector v es el vector velocidad en $t = 0$ del camino $\lambda(t) = \varphi \circ \alpha(t) = \varphi(x + tu)$. Es claro que $\lambda(0) = p$.

Recíprocamente, sea $\lambda :]-\varepsilon, \varepsilon[\to M$ un camino diferenciable con $\lambda(0) = p$. Sea $\varphi : U_0 \subset \mathbb{R}^m \to V \subset M$ una parametrización, con $p = \varphi(x) \in V$. Sin perdida de generalidad, podemos suponer que $\lambda(t) \in V$ para todo $t \in]-\varepsilon, \varepsilon[$. El camino $\varphi^{-1}\circ \lambda :]-\varepsilon, \varepsilon[\to U_0$ es diferenciable.
Escribiendo \(u = \frac{d}{dt} (\varphi^{-1} \circ \lambda)(0) \), tenemos \(u = (D\varphi(x))^{-1} \lambda'(0) \), por lo tanto \(\lambda'(0) = D\varphi(x)u \). Lo que termina la prueba.

Observación. En las ilustraciones, cuando dibujamos \(T_pM \) lo que hacemos en realidad es dibujar el subespacio afín \(p + T_pM = \{ p + v \in \mathbb{R}^n : v \in T_pM \} \), traslado a \(p \) del subespacio vectorial \(T_pM \) de \(\mathbb{R}^n \).

Ejemplos.

1. Sea \(M = S^n \) la esfera unitaria. Dado \(p \in S^n \) se tiene que \(T_pS^n = p^\perp = \{ v \in \mathbb{R}^{n+1} : \langle p, v \rangle = 0 \} \) subespacio ortogonal a \(p \).

 En efecto, sea \(\lambda :] - \varepsilon, \varepsilon [\rightarrow S^n \) un camino diferenciable con \(\lambda(0) = p \), entonces \(\lambda'(0) \in T_pS^n \). Como \(S^n = f^{-1}(0) \), donde \(f : \mathbb{R}^{n+1} \rightarrow \mathbb{R} \) es dada por \(f(x_1, \ldots, x_{n+1}) = x_1^2 + \cdots + x_{n+1}^2 - 1 \), tenemos que \((f \circ \lambda)'(0) = Df(p)\lambda'(0) = 0 \), pues \(\lambda(t) \in S^n \) implica que \(f(\lambda(t)) = 0 \). Por lo tanto, \(v = \lambda'(0) \in \ker(Df(p)) \), esto es, \(T_pS^n \subset \ker(Df(p)) \). Ahora, como \(Df(p) : \mathbb{R}^{n+1} \rightarrow \mathbb{R} \) es sobreyectiva se sigue que \(\dim \ker(Df(p)) = n \), y como \(\dim T_pS^n = n \) se tiene que \(T_pS^n = \ker(Df(p)) = p^\perp \).

2. Espacio tangente a \(O(n) \). Recordemos que \(O(n) = F^{-1}(I) \), donde \(F : \mathbb{M}(n \times n, \mathbb{R}) \rightarrow S(n) \) es la aplicación \(C^\infty \) dada por \(F(X) = XX^T \). Como \(I \) es un valor regular de \(F \), tenemos que \(T_I O(n) = \ker DF(I) \). Ahora como \(DF(X)V = XV^T + VX^T \), se tiene \(DF(I)V = V^T + V \) y de aquí \(\ker(DF(I)) = \{ V \in \mathbb{M}(n \times n, \mathbb{R}) : V^T = -V \} \) que es el subespacio vectorial de \(\mathbb{M}(n \times n, \mathbb{R}) \) de las matrices antisimétricas.

Nota. El conjunto \(O^+(2) = \{ A \in O(n) : \det(A) = 1 \} \) es un grupo canónicamente isomorfo a \(S^1 = \{ (\cos(\theta), \sin(\theta)) \in \mathbb{R}^2 : \)}
\[\theta \in \mathbb{R} \}. \] El isomorfismo es dado por \(\Gamma : S^1 \to O^+(2) \) definida por
\[
(\cos(\theta), \sin(\theta)) \to \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.
\]

3. Espacio tangentes al grupo especial lineal \(SL(n) \). Tenemos que \(SL(n) = \det^{-1}(1) \), y como \(D \det(I)H = \text{traza}(H) \), se sigue que \(T_pSL(n) = \ker(D \det(I)) = \{ H \in M(n \times n, \mathbb{R}) : \text{traza}(H) = 0 \} \).

7.3.1 Bases en \(T_pM \)

Sea \(M^m \subset \mathbb{R}^n \) una superficie \(C^k \ (k \geq 1) \) y sea \(\varphi : U_0 \subset \mathbb{R}^m \to V \subset M \) una parametrización, con \(\varphi(x) = p \). Una base para \(T_pM \) es dada por el conjunto de vectores
\[
B_\varphi(p) = \left\{ \frac{\partial \varphi}{\partial x_j}(x) : j = 1, \ldots, m \right\},
\]
donde \(\frac{\partial \varphi}{\partial x_j}(x) = D\varphi(x)e_j \) y \(e_j \) es el \(j \)-ésimo vector canónico de \(\mathbb{R}^m \).

Recordemos que \(\varphi = (\varphi_1, \ldots, \varphi_n) \) y \(\frac{\partial \varphi}{\partial x_j}(x) = \left(\frac{\partial \varphi_1}{\partial x_j}(x), \ldots, \frac{\partial \varphi_n}{\partial x_j}(x) \right) \), para \(j = 1, \ldots, m \).

Ejemplos.

1. Sea \(U \subset \mathbb{R}^m \) un conjunto abierto, y sea \(f : U \to \mathbb{R}^n \) una aplicación de clase \(C^k \ (k \geq 1) \). Entonces \(M = \text{graf}(f) = \{(x, f(x)) \in \mathbb{R}^{m+n} : x \in U \} \) es una superficie de clase \(C^k \) y dimensión \(m \), con una única parametrización \(\varphi : U \to M \) dada por \(\varphi(x) = (x, f(x)) \). Si escribimos \(f = (f_1, \ldots, f_n) \) y \(x = (x_1, \ldots, x_m) \), entonces
\[
\varphi(x_1, \ldots, x_m) = (x_1, \ldots, x_m, f_1(x_1, \ldots, x_m), \ldots, f_n(x_1, \ldots, x_m))
\]
Superficies en Espacios Euclideanos

\[
\frac{\partial \varphi}{\partial x_j}(x) = \left(0, \ldots, 0, 1, 0, \ldots, 0, \frac{\partial f_1}{\partial x_j}(x), \ldots, \frac{\partial f_n}{\partial x_j}(x)\right),
\]

para \(j = 1, \ldots, m \) (el 1 en el lugar \(j \)). Luego una base para \(T_{\varphi(x)} \text{graf}(f) \) es dada por el conjunto de vectores \(\left\{ \frac{\partial \varphi}{\partial x_1}(x), \ldots, \frac{\varphi}{\partial x_m}(x) \right\} \).

2. Consideremos la esfera unitaria \(S^n \subset \mathbb{R}^{n+1} \). Ya vimos que esta es una superficie de clase \(C^\infty \) y dimensión \(n \). Además, vimos que \(S^n = f^{-1}(0) \), donde \(f : \mathbb{R}^{n+1} \to \mathbb{R} \) es la aplicación de clase \(C^\infty \) dada por \(f(x) = (x, x) - 1 = x_1^2 + \cdots + x_{n+1}^2 - 1 \). También sabemos que si \(p \in S^n \) entonces

\[
T_p S^n = \{ v \in \mathbb{R}^{n+1} : v = \frac{d\lambda}{dt}(0), \lambda : [-\epsilon, \epsilon] \to S^n \ \text{diferenciable}, \]

con \(\lambda(0) = p \} = p^\perp \).

Por lo tanto para tener una base de \(T_p S^n \) basta encontrar una base de \(p^\perp \).

3. Sea \(E = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{b^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \} \) el elipsoide. Dado \(p \in E \) cualesquiera, calculemos \(T_p E \). Para ellos supongamos que \(p \) está en la imagen de la parametrización \(\varphi_1^+ \) (construida anteriormente), es decir, \(\varphi_1^+(y, z) = p = (p_1, p_2, p_3) \). En los otros casos los cálculos son análogos.

Tenemos que \(\varphi_1^+(y, z) = \left(a\sqrt{1 - \frac{y^2}{b^2} - \frac{z^2}{c^2}}, y, z \right) = (p_1, p_2, p_3) \), de donde \(y = p_2 \) y \(z = p_3 \). Ahora

\[
J \varphi_1^+(p_2, p_3) \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \frac{-p_2}{b^2} & \frac{1}{\sqrt{1 - \frac{p_2^2}{b^2} - \frac{p_3^2}{c^2}}} & \frac{-p_3}{c^2} \\ \sqrt{1 - \frac{p_2^2}{b^2} - \frac{p_3^2}{c^2}} & \frac{1}{\sqrt{1 - \frac{p_2^2}{b^2} - \frac{p_3^2}{c^2}}} & \frac{-p_2}{b^2} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}
\]
de donde

\[T_pE = D\varphi^1(p_2,p_3)(\mathbb{R}^2) \]
\[= \left\{ \left(\frac{-p_2}{\sqrt{1 - p_2^2 - p_3^2}}, 0, 1 \right), \left(\frac{p_3}{\sqrt{1 - p_2^2 - p_3^2}}, 0, 1 \right) \right\} \, . \]

7.3.2 Cambio de Base en \(T_pM \)

Sea \(M^m \subset \mathbb{R}^n \) una superficie de clase \(C^k \), con \(k \geq 1 \). Sean \(p \in M \) y \(\varphi : U_0 \subset \mathbb{R}^m \to U \subset M \) una parametrización con \(p = \varphi(x) \). Tenemos que \(B_\varphi(p) = \left\{ \frac{\partial \varphi}{\partial x_1}(x), \ldots, \frac{\partial \varphi}{\partial x_m}(x) \right\} \) es una base de \(T_pM \), y cada \(v \in T_pM \) se escribe en la forma \(v = \sum_{i=1}^{m} \alpha_i \frac{\partial \varphi}{\partial x_i}(x) \). Ahora consideremos otra parametrización \(\psi : V_0 \subset \mathbb{R}^m \to U \) con \(\psi(y) = p \), asociada a ella tenemos una nueva base \(B_\psi(p) = \left\{ \frac{\partial \psi}{\partial y_1}(y), \ldots, \frac{\partial \psi}{\partial y_m}(y) \right\} \) de \(T_pM \). La pregunta natural que surge aquí es ¿Cómo se relacionan estas dos bases de \(T_pM \)?

Para ver la relación que existe entre las bases \(B_\varphi(p) \) y \(B_\psi(p) \) de \(T_pM \), consideremos el cambio de coordenadas \(\xi = \psi^{-1} \circ \varphi : \varphi^{-1}(U) \to \psi^{-1}(U) \). Tenemos que \(\varphi/\varphi^{-1}(U) = \psi \circ \xi \), y escribiendo \(\xi = (\xi_1, \ldots, \xi_m) \) tenemos que \(D(\xi) e_j = \frac{\partial \xi}{\partial x_j}(x) e_i = \sum_{i=1}^{m} \frac{\partial \xi_i}{\partial x_j}(x) e_i \).

Por lo tanto,

\[
\frac{\partial \varphi}{\partial x_j}(x) = D\varphi(x)e_j = D\psi(y)\circ D\xi(x)e_j \]
\[= D\psi(y)\left(\sum_{i=1}^{m} \frac{\partial \xi_i}{\partial x_j}(x) e_i \right) \]
\[= \sum_{i=1}^{m} \frac{\partial \xi_i}{\partial x_j}(x) D\psi(y)e_i \]
\[= \sum_{i=1}^{m} \frac{\partial \xi_i}{\partial x_j}(x) \frac{\partial \psi}{\partial y_i}(y) , \]

es decir, $$\frac{\partial \varphi}{\partial x_j}(x) = \sum_{i=1}^{m} \frac{\partial \xi_i}{\partial x_j}(x) \frac{\partial \psi}{\partial y_i}(y).$$

Luego la matriz cambio de base de la base $$B_{\varphi}(p)$$ para la base $$B_{\psi}(p)$$ es dada por la matriz jacobiana del cambio de coordenadas $$\xi$$ en el punto $$x$$, esto es, si $$v \in T_pM$$ entonces

$$v = \sum_{i=1}^{m} \alpha_i \frac{\partial \varphi}{\partial x_i}(x) = \sum_{i=1}^{m} \beta_i \frac{\partial \psi}{\partial y_i}(y),$$
donde $$\beta_i = \sum_{j=1}^{m} \alpha_j \frac{\partial \xi_i}{\partial x_j}(x)$$.

Ejemplo.

Calculemos la matriz cambio de base en $$T_pS^2$$ con $$p = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right)$$ cuando usamos dos parametrizaciones cuyas imágenes contienen a $$p$$.

Sean

$$U_0 = \{(u, v) \in \mathbb{R}^2 : -\sqrt{1-u^2} < v < \sqrt{1-u^2}, -1 < u < 1\},$$

$$V_0 = \{(x, y) \in \mathbb{R}^2 : -\sqrt{1-x^2} < y < \sqrt{1-x^2}, -1 < x < 1\},$$

$$U_1^+ = H_1^+ \cap S^2,$$

$$U_3^+ = H_3^+ \cap S^2.$$

Claramente $$U_1^+ \cap U_3^+ \neq \emptyset$$, de hecho $$p \in U_1^+ \cap U_3^+.$$ Consideremos las parametrizaciones $$\varphi : U_0 \rightarrow U_1^+$$ dada por $$\varphi(u, v) = (\sqrt{1-u^2-v^2}, u, v)$$ y $$\psi : V_0 \rightarrow U_3^+$$ dada por $$\psi(x, y) = (x, y, \sqrt{1-x^2-y^2}).$$

Calculamos primero $$T_pS^2$$ usando la parametrización $$\varphi$$, es decir, $$T_pS^2 = D\varphi(u_0, v_0)(\mathbb{R}^2),$$ donde $$\varphi(u_0, v_0) = p.$$ Tenemos entonces que
\(\varphi(u_0, v_0) = (\sqrt{1-u_0^2-v_0^2}, u_0, v_0) = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) \), de donde \(u_0 = 0 \) y \(v_0 = \frac{1}{\sqrt{2}} \). Ahora

\[
J\varphi(u, v) = \begin{pmatrix}
-u & -v \\
\sqrt{1-u^2-v^2} & \sqrt{1-u^2-u^2} \\
1 & 0 \\
0 & 1
\end{pmatrix}
\]

luego

\[
J\varphi \left(0, \frac{1}{\sqrt{2}} \right) = \begin{pmatrix}
0 & -1 \\
1 & 0 \\
0 & 1
\end{pmatrix}.
\]

De lo anterior tenemos entonces que

\[
T_pS^2 = D\varphi \left(0, \frac{1}{\sqrt{2}} \right) (\mathbb{R}^2) = \{ (-b, a, b) : a, b \in \mathbb{R} \} = \{ (0, 1, 0), (-1, 0, 1) \}.
\]

Ahora calculamos \(T_pS^2 \) usando la otra parametrización, es decir, \(T_pS^2 = D\psi(x_0, y_0)(\mathbb{R}^2) \) con \(\psi(x_0, y_0) = p \). Tenemos entonces que \(\psi(x_0, y_0) = (x_0, y_0, \sqrt{1-x_0^2-y_0^2}) = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right), \) de donde \(x_0 = \frac{1}{\sqrt{2}} \) e \(y_0 = 0 \). Ahora,

\[
J\psi(x, y) = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
-x & -y \\
\sqrt{1-x^2-y^2} & \sqrt{1-x^2-y^2}
\end{pmatrix}
\]

luego

\[
J\psi \left(0, \frac{1}{\sqrt{2}} \right) = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
-1 & 0
\end{pmatrix}.
\]
De lo anterior tenemos que

\[T_p S^2 = D\psi \left(\frac{1}{\sqrt{2}}, 0 \right) \left(\mathbb{R}^2 \right) = \{(a, b, -a) : a, b \in \mathbb{R}\} = \langle \{(1, 0, -1), (0, 1, 0)\} \rangle. \]

Calculemos ahora el cambio de coordenadas. Tenemos \(\xi = \psi^{-1} \circ \varphi : \varphi^{-1}(U_1^+ \cap U_3^+) \to \psi^{-1}(U_1^+ \cap U_3^+) \), donde \(U_1^+ \cap U_3^+ = \{(x, y, z) \in \mathbb{R}^3 : x > 0, z > 0\} \)

\[J(\psi^{-1} \circ \varphi)(u, v) = \begin{pmatrix} -u \sqrt{1 - u^2 - v^2} & -v \sqrt{1 - u^2 - v^2} \\ \sqrt{1 - u^2 - v^2} & \sqrt{1 - u^2 - v^2} \\ 1 & 0 \end{pmatrix}, \]

de donde

\[J(\psi^{-1} \circ \varphi) \left(0, \frac{1}{\sqrt{2}} \right) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}. \]

Luego \((1, 0, -1) = 0(0, 1, 0) + (-1)(-1, 0, 1) \) y \((0, 1, 0) = 1(0, 1, 0) + 0(-1, 0, 1) \).

Otra manera de ver esto es la siguiente. Tenemos que \(\xi = \psi^{-1} \circ \varphi \), de donde \(\varphi = \psi \circ \xi \). Por lo tanto,

\[\frac{\partial \varphi}{\partial u}(u_0, v_0) = D\varphi(u_0, v_0)e^1 = D(\psi \circ \xi)(u_0, v_0)e^1 = D\psi(\xi(u_0, v_0))D\xi(u_0, v_0)e_1 = D\psi(\xi(u_0, v_0))\frac{\partial \xi}{\partial u}(u_0, v_0) = D\psi(\xi(u_0, v_0)) \left(\frac{\partial \xi_1}{\partial u}(u_0, v_0)e_1 + \frac{\partial \xi_2}{\partial u}(u_0, v_0)e_2 \right) = D\psi(\xi(u_0, v_0))\frac{\partial \xi_1}{\partial u}(u_0, v_0)e_1 + D\psi(\xi(u_0, v_0))\frac{\partial \xi_2}{\partial u}(u_0, v_0)e_2 \]
\[
= \frac{\partial \xi_1}{\partial u}(u_0, v_0) D\psi(\xi(u_0, v_0)) e_1 + \frac{\partial \xi_2}{\partial u}(u_0, v_0) D\psi(\xi(u_0, v_0)) e_2 \\
= \frac{\partial \xi_1}{\partial u}(u_0, v_0) \frac{\partial \psi}{\partial u}(\xi(u_0, v_0)) + \frac{\partial \xi_2}{\partial u}(u_0, v_0) \frac{\partial \psi}{\partial v}(\xi(u_0, v_0))
\]

Lo cual puede ser escrito en forma resumida como
\[
\frac{\partial \varphi}{\partial u} = \frac{\partial \xi_1}{\partial u} \frac{\partial \psi}{\partial u} + \frac{\partial \xi_2}{\partial u} \frac{\partial \psi}{\partial v}
\]
de modo análogo se tiene que
\[
\frac{\partial \varphi}{\partial v} = \frac{\partial \xi_1}{\partial v} \frac{\partial \psi}{\partial u} + \frac{\partial \xi_2}{\partial v} \frac{\partial \psi}{\partial v}
\]
Así
\[
\frac{\partial \varphi}{\partial u} \left(0, \frac{1}{\sqrt{2}}\right) = (0, 1, 0) = 0(1, 0, -1) + 1(0, 1, 0)
\]
\[
\frac{\partial \varphi}{\partial v} \left(0, \frac{1}{\sqrt{2}}\right) = (-1, 0, 1) = -1(1, 0, -1) + 0(0, 1, 0)
\]
como queríamos ver.

7.3.3 Derivada de una Aplicación Diferenciable entre Superficies

Usando la definición de espacio tangente a una superficie, podemos definir la derivada de una aplicación diferenciable definida en superficies.

Sean \(M^m \subset \mathbb{R}^\ell \) y \(N^n \subset \mathbb{R}^s \) superficies de clase \(C^k \), con \(k \geq 1 \). Sea \(f : M \to N \) una aplicación diferenciable. Dado \(p \in M \) definimos la derivada de \(f \) en \(p \) como sigue: sea \(\varphi : U_0 \subset \mathbb{R}^m \to U \subset M \) una parametrización con \(\varphi(x) = p \) entonces \(f \circ \varphi : U_0 \subset \mathbb{R}^m \to \mathbb{R}^s \). Ahora, dado \(v \in T_p M \) se tiene que \(v = D\varphi(x)u \), para un único vector \(u \in \mathbb{R}^m \) y definimos \(Df(p)v = D(f \circ \varphi)(x)u \).
Notemos que si \(\varphi : U \subset \mathbb{R}^m \rightarrow V \subset M \) es una parametrización, con \(\varphi(x) = p \) entonces \(D\varphi(x) : \mathbb{R}^m \rightarrow T_pM \) es un isomorfismo, pues \(D\varphi(x) \) es una aplicación lineal inyectiva y \(\dim T_pM = m = \dim \mathbb{R}^m \).

Afirmamos que \(Df(p)v \in T_{f(p)}N \) y que \(Df(p) : T_pM \rightarrow T_{f(p)}N \) es una aplicación lineal; además la definición de \(Df(p) \) no depende de la elección de la parametrización de una vecindad de \(p \).

En efecto, el hecho que \(Df(p) \) sea lineal es inmediato, pues \(f \circ \varphi \) es una aplicación entre espacios euclideanos. Ahora, sea \(\varphi_1 : U_1 \subset \mathbb{R}^m \rightarrow U \subset M \) otra parametrización, con \(\varphi_1(y) = p \) y \(v = D\varphi_1(y)u_1 \).

Usando el cambio de coordenadas \(\xi = \varphi^{-1} \circ \varphi_1 : \varphi_1^{-1}(U) \rightarrow \varphi^{-1}(U) \), el cual es un difeomorfismo entre abiertos de \(\mathbb{R}^m \), tenemos que \(\xi(y) = x \) y \(D\varphi(x)u = v = D\varphi_1(y)u_1 = D(\varphi \circ \xi)(y)u_1 = D\varphi(x)(D\xi(y)u_1) \) y como \(D\varphi(x) \) es inyectiva se sigue que \(u = D\xi(y)u_1 \). Por lo tanto, \(D(f \circ \varphi_1)(y)u_1 = D(f \circ \varphi \circ \xi)(y)u_1 = D(f \circ \varphi)(x) \circ D\xi(y)u_1 = D(f \circ \varphi)(x)u \). Finalmente, veamos que para todo \(v \in T_pM \) se tiene \(Df(p)v \in T_{f(p)}N \). Para esto recordemos que si \(v \in T_pM \) entonces existe un camino diferenciable \(\lambda :]-\varepsilon, \varepsilon[\rightarrow M \) con \(\lambda(0) = p \) y \(\lambda'(0) = v \). Luego, \(Df(p)v = Df(\lambda(0))\lambda'(0) = (f \circ \lambda)'(0) \), es decir, \(Df(p)v \) es el vector velocidad en \(t = 0 \) del camino diferenciable \(\sigma = f \circ \lambda :]-\varepsilon, \varepsilon[\rightarrow N \) por lo tanto \(Df(p)v \in T_{f(p)}N \).

Ahora la pregunta natural es ¿cómo calcular \(Df(p) \)?. Consideremos parametrizaciones \(\varphi : U_0 \subset \mathbb{R}^m \rightarrow U \subset M \) con \(\varphi(x) = p \), y \(\psi : V_0 \subset \mathbb{R}^n \rightarrow V \subset N \) tales que \(f(U) \subset V \) y \(f(p) = \psi(y) \). Tenemos el siguiente diagrama.
Se sigue entonces que \(Df(p)v = D\psi(y) \circ D(\psi^{-1} \circ \varphi)(x) \circ (D\varphi(x))^{-1}v \).

Teorema 7.5 (Regla de la Cadena) Sea \(f : M^m \to N^n \) diferenciable en \(p \in M \) y sea \(g : N^n \to P^\ell \) diferenciable en \(q = f(p) \) entonces \(g \circ f : M \to P \) es diferenciable en \(p \) y \(D(g \circ f)(p) = Dg(f(p)) \circ Df(p) \).

Demostración. Ya demostramos que \(g \circ f \) es diferenciable en \(p \). Ahora sea \(v \in T_p M \). Tenemos que \(v = \lambda'(0) \), donde \(\lambda :]-\varepsilon,\varepsilon[\to M \) es un camino diferenciable con \(\lambda(0) = p \). Tomando \(\mu(t) = (f \circ \lambda)(t) \) se tiene que \(\mu \) es un camino en \(N \) con \(\mu(0) = f(p) \) y \(\mu'(0) = Df(p)\lambda'(0) = \in T_{f(p)} N \). Por definición de derivada, \(D(g \circ f)(p)v = D(g \circ f)(\lambda(0))\lambda'(0) = ((g \circ f) \circ \lambda)'(0) = (g \circ (f \circ \lambda))' \) s(0) = Dg(f(p))\mu'(0) = Dg(f(p)) \circ Df(p)v \).

7.4 Partición de la Unidad

La noción de partición de la unidad es una de las herramientas más importantes en el estudio de superficies, ellas permiten pegar resultados locales y obtener así resultados globales. Para mostrar la existencia de particiones de la unidad, necesitamos construir una clase especial de funciones, llamadas “funciones cototos” (bump functions).
Proposición 7.4 (Existencia de funciones cototos en \mathbb{R}^n). Para cada entero $n \geq 1$ y cada número real $\delta > 0$ existe una aplicación C^∞, $\psi : \mathbb{R}^n \to \mathbb{R}$, que satisface $\psi/B(0,1) = 1$ y $\psi/(\mathbb{R}^n - B(0,1 + \delta)) = 0$.

Demostración. Consideremos la función $\phi : \mathbb{R} \to \mathbb{R}$ definida por

$$
\phi(t) = \begin{cases}
\exp\left(-\frac{1}{(t-a)(b-t)}\right) & \text{si } a < t < b \\
0 & \text{otro caso ,}
\end{cases}
$$

donde $\exp(t) = e^t$. Es claro que ϕ es C^∞ y que $\phi^{(k)}(a) = \phi^{(k)}(b) = 0$, para todo $k \in \mathbb{N}$.

Ahora definamos la función $\theta : \mathbb{R} \to \mathbb{R}$ por

$$
\theta(t) = \frac{\int_a^t \phi(x)dx}{\int_{-\infty}^\infty \phi(s)ds}
$$

es claro que θ es de clase C^∞ y que $\theta(t) = 0$ para $t \leq a$, y $\theta(t) = 1$ para $t \geq b$. El gráfico de θ se muestra en la figura siguiente,
Ahora tomemos $a = 1$ y $b = (1 + \delta)^2$, y definamos la función $\eta : \mathbb{R} \to \mathbb{R}$ por $\eta(t) = 1 - \theta(t)$. Entonces tenemos que η es de clase C^∞ y satisface $\eta = 0$ para $t \geq (1 + \delta)^2$ y $\eta = 1$ para $t \leq 1$. La siguiente figura muestra el gráfico de η.

Finalmente, definamos la función $\psi : \mathbb{R}^n \to \mathbb{R}$ por $\psi(x) = \eta(||x||^2)$. Como la función $x \mapsto ||x||^2$ es C^∞, la función ψ también lo es. Tenemos que $\psi(x) = 0$ si, y sólo si, $||x||^2 \geq (1 + \delta)^2$, y $\psi(x) = 1$ si, y sólo si, $||x||^2 \leq 1$. La siguiente figura muestra el gráfico de ψ.

Una función ψ como arriba es llamada una función cototo. Esto completa la prueba de la proposición.

Ahora demostraremos la existencia de funciones cototos en superficies. Primero probaremos el siguiente lema.

Lema 7.1 Sea $M^m \subset \mathbb{R}^n$ una superficie de clase C^k ($k \geq 1$). Dado $p \in M$ existe una parametrización $\varphi : B(0, 3) \subset \mathbb{R}^m \to U \subset M$, con
\(\varphi(0) = p \in U \), donde $$B(0, 3)$$ es la bola abierta de centro en 0 y radio 3 en \(\mathbb{R}^m \).

Demostración. Sea \(\varphi_1 : U_0 \subset \mathbb{R}^m \rightarrow U_1 \subset M \) una parametrización, con \(\varphi_1(x_0) = p \in U_1 \). Consideremos la traslación \(T : \mathbb{R}^m \rightarrow \mathbb{R}^m \), dada por \(T(x) = x - x_0 \) entonces \(T(x_0) = 0 \), y tomando \(V_0 = T(U_0) \) tenemos que \(\varphi_2 = \varphi_1 \circ T^{-1} : V_0 \subset \mathbb{R}^m \rightarrow U_1 \) es parametrización en \(M \) con \(\varphi_2(0) = p \). Ahora, como \(V_0 \subset \mathbb{R}^m \) es un abierto que contiene a 0, existe \(r > 0 \) tal que \(B(0, r) \subset V_0 \). Pongamos \(U = \varphi_2(B(0, r)) \subset U_1 \). Entonces \(\varphi_3 = \varphi_2/B(0,r) : B(0,r) \rightarrow U \) es una parametrización en \(M \). Ahora, sea \(h : \mathbb{R}^m \rightarrow \mathbb{R}^m \) la homotecia \(h(x) = 3x/r \), tenemos que \(h(B(0,r)) = B(0,3) \). Finalmente, definimos \(\varphi : B(0,3) \rightarrow U \subset M \) por \(\varphi = \varphi_3 \circ h^{-1} \), es fácil ver que \(\varphi \) satisface las condiciones pedidas.

Teorema 7.6 Sea \(M^m \) una superficie de clase \(C^k \), con \(k \geq 1 \). Entonces existe una función cototo definida sobre \(M \).

Demostración. Vamos a demostrar que dada una parametrización \(\varphi : B(0,3) \subset \mathbb{R}^m \rightarrow U \subset M \) como en el lema anterior, asociada a ella existe una función cototo \(C^k \), \(f_\varphi : M \rightarrow \mathbb{R} \). Para construir \(f_\varphi \), procedemos como sigue: sean \(V = \varphi(B(0, 2)) \) y \(W = \varphi(B(0, 1)) \), y sea \(\Psi : \mathbb{R}^m \rightarrow \mathbb{R} \) una función cototo, tal que \(\Psi(x) = 1 \) para \(x \in B(0,1) \) y \(\Psi(x) = 0 \) para \(x \in \mathbb{R}^m - B(0,2) \). Definamos \(f_\varphi \) por,

\[
f_\varphi(x) = \begin{cases}
(\Psi \circ \varphi^{-1})(x) & \text{si } x \in U, \\
0 & \text{si } x \in M - V.
\end{cases}
\]

Entonces \(f_\varphi \) satisface:

(i) \(0 \leq f_\varphi(x) \leq 1 \), para todo \(x \in M \),
(ii) $f_\phi/W = 1$ y $f_\phi/(M - V) = 0$.

Lo que finaliza la prueba.

7.5 Partición de la Unidad

Sea M^m una superficie de clase C^k, con $k \geq 1$.

Definición 7.4 Sea $f : X \subset \mathbb{R}^n \rightarrow \mathbb{R}$. El soporte de f es el conjunto $\text{sop}(f) = \text{clausura}\left\{x \in X : f(x) \neq 0\right\}$.

Observación. Dado $x \in M$, entonces $x \notin \text{sop}(f)$ si, y sólo si, $f = 0$ en toda una vecindad de x.

Definición 7.5 Sea M^m una superficie C^k ($k \geq 1$). Una partición de la unidad de clase C^k en M es una familia $\mathcal{PU} = \{(U_i, \psi_i) : i \in \Lambda\}$, donde los conjuntos $U_i \subset M$ son abiertos y $\psi_i : M \rightarrow \mathbb{R}$ son funciones C^k, que satisfacen las siguientes propiedades:

pu1.- $\psi_i(x) \geq 0$ para todo $x \in M$ y todo $i \in \Lambda$,

pu2.- $\text{sop}(\psi_i)$ está contenido en U_i, para todo $i \in \Lambda$,

pu3.- $U = \{U_i : i \in I\}$ es un cubrimiento abierto localmente finito de M, es decir, para cada $x \in M$ existe una vecindad U de x tal que $U \cap U_i = \emptyset$, salvo para una cantidad finita de índices.

pu4.- para cada $x \in M$ se tiene que $\sum_{i \in \Lambda} \psi_i(x) = 1$.

Observación. La suma en pu4 tiene sentido, pues para cada $x \in M$, sólo un número finito de los $\psi_i(x)$ son no cero. Además, esta suma es una función C^k, pues por pu3, podemos encontrar una vecindad abierta...
U de x en M la cual intersecta sólo un número finito de los conjuntos
Uₖ, y por pu2 sólo las funciones ψₖ asociadas a estas vecindades son no
creo en x.

Nota. Cuando no exista peligro de confusión denotaremos una partición
de la unidad simplemente por Ψ = {ψₖ : i ∈ Λ}, esto es, sin especificar
los abiertos Uₖ que contienen los soportes de las funciones ψₖ.

Teorema 7.7 Sea Mᵐ una superficie Cʳ, con r ≥ 1. Entonces para
cada cubrimiento abierto localmente finito U de M, existe una partición
de la unidad subordinada a U (es decir, los dominios de las funciones ψ
forman un cubrimiento de M y están contenidos en elementos de U).

Demostración. Sea f : ℝᵐ → [0, 1] una función cototo de clase C∞,
tal que f(x) = 1 para x ∈ B(0, 1) y f(x) = 0 para x ∈ B(0, 2). Sea
(Uₖ, φₖ) una parametrización como en el Lema 7.2. Para cada k ∈ ℕ,
definimos la función cototo de clase Cʳ, θₖ : M → ℝ por θₖ = 0 sobre
M − φₖ(B(0, 2)) y como θₖ = f ∘ φ⁻¹ₖ sobre Uₖ. Sólo un número finito
de θₖ(x) son no cero en para cada x ∈ M, pues x ∈ Uₖ sólo para un
número finito de k. Además, al menos una de las funciones θₖ es no cero
en x, pues los conjuntos φₖ(B(0, 1)) forman un cubrimiento abierto de
M. Luego la función θ : M → ℝ definida por θ(x) = ∑ₖ θₖ(x) está
bien definida, es de clase Cʳ, y estrictamente positiva. Finalmente,
obtenemos una partición de la unidad colocando ψₖ = θₖ/θ, para cada
k, es decir, ψₖ es de clase Cʳ, toma valores en el intervalo [0, 1] y
sop(ψₖ) = sop(θₖ) ⊂ Uₖ, está contenido en algún elemento V ∈ U.
Además, el cubrimiento {Uₖ : k ∈ ℕ} es localmente finito y tenemos
∑ₖ ψₖ = 1. Lo cual termina la prueba.
7.6 Ejercicios

1. Pruebe que la aplicación \(f : \mathbb{S}^n \times \mathbb{R} \to \mathbb{R}^{n+1} \), dada \(f(x, t) = e^t x \) es de clase \(C^\infty \). ¿Es \(f \) un difeomorfismo (local)?

2. Suponga que la ecuación \(f_p(x, y) = 0 \) determina \(p + 1 \) círculos disjuntos en el espacio \(\mathbb{R}^2 \), donde \(p \) de esos círculos están contenidos dentro de un disco abierto determinado por uno de ellos, por ejemplo \(p = 2 \),

\[
f(x, y) = (x^2 + y^2 - 16)((x + 2)^2 + y^2 - 1)((x - 2)^2 + y^2 - 1)
\]

\[
\begin{tikzpicture}
 \draw (0,0) circle (2);
 \filldraw (2,0) circle (2pt);
 \filldraw (-2,0) circle (2pt);
 \node at (2,0) {\(C_2 \)}; \node at (-2,0) {\(C_1 \)};
\end{tikzpicture}
\]

Donde \(C_1 := (x - 2)^2 + y^2 - 1 = 0 \), \(C_2 := (x + 2)^2 + y^2 - 1 = 0 \) y \(C_3 := x^2 + y^2 - 16 = 0 \).

Defina \(F_p(x, y, z) = f_p(x, y) + z^2 \). Pruebe que para cada \((x, y, z) \in F_p^{-1}(0)\) se tiene que \(DF_p(x, y, z) \neq 0 \). Describa el conjunto \(M_p = F_p^{-1}(0) \), para \(p = 1, 2, 3 \). ¿Puede decir cuál es el conjunto \(M_p \), para \(p \geq 4 \)?

3. Sea \(f : \mathbb{R}^2 \to \mathbb{R}^4 \) dada por

\[
f(u, v) = (x(u, v), y(u, v), z(u, v), w(u, v))
\]
Superície en Espacios Euclideanos

donde

\[
\begin{align*}
x(u, v) &= (r \cos(v) + a) \cos(u) \\
y(u, v) &= (r \cos(v) + a) \sen(u) \\
z(u, v) &= r \cos(\frac{u}{2}) \sen(v) \\
w(u, v) &= r \sen(\frac{u}{2}) \sen(v).
\end{align*}
\]

Pruebe que la imagen de \(f \) es una superficie 2–dimensional de clase \(C^\infty \), (botella de Klein). Restringiendo adecuadamente \(f \) a dominios de \(\mathbb{R}^2 \), construya parametrizaciones para la botella de Klein, y calcule los cambios de coordenadas.

4. Sea \(f : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \), dada por

\[
f(u, v) = ((a + b \cos(v)) \cos(u), (a + b \cos(v)) \sen(u), c \sen(v))
\]

Muestre que la imagen de \(f \) es una superficie 2–dimensional de clase \(C^\infty \) llamada toro elíptico. Caso \(a > b = c \), se obtiene el toro usual. Construya parametrizaciones para la imagen de \(f \).

5. Usando la función \(f : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) dada por

\[
f(u, v) = (a \cos(v) \cos(u), b \cos(v) \sen(u), c \sen(v)).
\]

Construya parametrizaciones para el elipsoide \(E = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \} \).

6. Pruebe que \(M = \{(x, y, z) \in \mathbb{R}^2 : x^4 + y^4 + z^4 = 1 \} \) es una superficie de clase \(C^\infty \), difeomorfa a la esfera \(S^2 \).
7. Pruebe que \(h : \mathbb{S}^n \times \mathbb{R} \to \mathbb{R}^{n+1} - \{0\} \) definida por \(h(x, t) = e^t x \) es un difeomorfismo \(C^\infty \).

Indicación. La inversa \(h^{-1} : \mathbb{R}^{n+1} - \{0\} \to \mathbb{S}^n \times \mathbb{R} \) es dada por
\[
 h^{-1}(x) = \left(\frac{x}{||x||}, \log ||x|| \right)
\]
where \(x = (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} - \{0\} \).

8. Sea \(f : \mathbb{R}^3 \to \mathbb{R} \) dada por \(f(x, y, z) = x^2 + (\sqrt{x^2 + y^2} - a)^2 \).

Estudie los conjuntos \(f^{-1}(\alpha) \), donde \(\alpha \in \mathbb{R} \), para qué valores de \(\alpha \), el conjunto \(M_\alpha = f^{-1}(\alpha) \) es una superficie?

9. Sea \(f : \mathbb{R}^2 \to \mathbb{R}^3 \), \(f(u, v) = (u^3, v^3, uv) \) ¿es la imagen de \(f \) una superficie?

10. Sea \(f : \mathbb{R}^2 \to \mathbb{R}^3 \) dada por \(f(u, v) = (u, v, u^3 - 3uv^2) \). Pruebe que la imagen de \(f \), \(M = \text{Im}(f) \), es una superficie 2–dimensional de clase \(C^\infty \) (llamada Silla del Mono.)

11. Pruebe que \(M = \{(x, y, z) \in \mathbb{R}^3 : x^2y^2 + x^2z^2 + y^2z^2 = 1\} \) es una superficie. ¿Cuál es su dimensión? ¿Cuál es su clase de diferenciabilidad?

12. Sea \(f : \mathbb{R}^3 \to \mathbb{R}^3 \) dada por \(f(x, y, z) = (x^2 - y^2, xy, yz) \). Pruebe que la imagen de \(f \) es una superficie \(C^\infty \). \(\text{Im}(f) = \mathbb{R}^2 \) es el plano proyectivo real 2–dimensional.)

13. Sea \(f : \mathbb{S}^2 \to \mathbb{R}^6 \) dada por
\[
 f(x, y, z) = (x^2, y^2, z^2, \sqrt{2}yz, \sqrt{2}xz, \sqrt{2}xy).
\]

Pruebe que \(M^2 = f(\mathbb{S}^2) \subseteq \mathbb{R}^6 \) es una superficie 2–dimensional de clase \(C^\infty \), \(M^2 \) es llamada superficie de Vérónesse).
14. En cada uno de los ejercicios anteriores y los vistos en clase, calcule el espacio tangente en un punto arbitrario de la superficie en cuestión.

15. Sea \(U \subset \mathbb{R}^m \) un conjunto abierto, y sea \(f : U \rightarrow \mathbb{R}^n \) una función \(C^k \) \((k \geq 1)\). Pruebe que \(T_{(p,f(p))}\text{graf}(f) = \text{graf}(Df(p)) \).

16. Dada \(A \in O(n) \). Pruebe que \(A : \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1} \) definida por \(A(x) = Ax \), es un difeomorfismo de clase \(C^\infty \).

17. Defina \(f : \mathbb{S}^1 \rightarrow \mathbb{S}^1 \), dada por \(f(z) = z^n \), donde \(n \in \mathbb{Z} - \{0\} \) y consideramos \(\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\} \). Pruebe que \(f \) es un difeomorfismo local de clase \(C^\infty \). ¿Es \(f \) un difeomorfismo?. Justifique su respuesta.

18. Dada una superficie \(M^m \) de clase \(C^k \) \((k \geq 2)\) contenida en \(\mathbb{R}^n \). Defina \(TM = \{(p,v) \in \mathbb{R}^n \times \mathbb{R}^n : p \in M, v \in T_pM\} \). Pruebe que \(TM \) es una superficie \(C^{k-1} \) y \(\dim TM = 2 \dim M \).

19. Pruebe que \(T\mathbb{S}^1 = \{(p,v) : p \in \mathbb{S}^1, v \in T_p\mathbb{S}^1\} \) es una superficie de clase \(C^\infty \), difeomorfa a \(\mathbb{S}^1 \times \mathbb{R} \). Usando esto pruebe que \(TT^2 = \{(p,v) : p \in T^2, v \in T_pT^2\} \) es una superficie difeomorfa a \(T^2 \times \mathbb{R}^2 \), donde \(T^2 = \mathbb{S}^1 \times \mathbb{S}^1 \subset \mathbb{R}^4 \) es el toro 2-dimensional.

20. Encuentre la ecuación del plano tangente a la superficie imagen de \(\varphi(u,v) = (3u + v, u^2 + v, u) \) en el punto \((8, 6, 2) \).

21. Encuentre el plano tangente a la superficie definida por la ecuación \(\cos(x) \cos(y)e^z = 0 \) en el punto \(\left(\frac{\pi}{2}, 1, 0\right) \).

22. Encuentre la ecuación del plano tangente a la superficie definida por \(x^2 + xy + y^2 + z^2 = 37 \) en el punto \((3, 4, 0) \).
23. El paraboloide \(z = 2x^2 + 3y^2 \) intersecta al cilindro \(x^2 + y^2 = 1 \) en una curva \(C \). Encuentre un vector tangente a la curva \(C \) en el punto \(\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{5}{2} \right) \).

24. Pruebe que
\[
G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}
\]
es una superficie 3–dimensional de clase \(C^\infty \).

25. Encuentre el plano tangente a la superficie imagen de \(\varphi(u, v) = (u^2 + v^2, u + v, v) \) en el punto \((13, -1, 2) \).

26. Sea \(S \) la superficie imagen de \(\varphi(u, v) = (u, 3v, 3u^2 + 8uv) \). Encuentre el plano tangente a \(S \) en un punto arbitrario.

27. Sean \(M^m \) y \(N^n \) superficies de clase \(C^k \), con \(k \geq 2 \), y sea \(f : M \to N \) una aplicación \(C^k \). Defina \(Tf : TM \to TN \) por \(Tf(p, v) = (f(p), Df(p)v) \). Pruebe que \(Tf \) es de clase \(C^{k-1} \). Para el caso \(M = N = S^1 \) y \(f(z) = z^\ell \) (\(\ell \in \mathbb{Z} \)) calcule \(Tf(p, v) \).

28. Sea \(M \) una superficie \(C^k \) \((k \geq 1) \). Pruebe que cada punto de \(M \) está contenido en la imagen de un sistema de coordenadas \(\varphi : B(0, 1) \to M \), donde \(B(0, 1) \subset \mathbb{R}^m \) es la bola abierta unitaria de centro en el origen.

29. Pruebe que \(\{(x^2, y^2, z^2, \sqrt{2}yz, \sqrt{2}zx, \sqrt{2}xy) \in \mathbb{R}^6 : x^2 + y^2 + z^2 = 1 \} \) es una superficie \(C^\infty \) contenida en \(\mathbb{R}^6 \).

Indicación. Considere la aplicación \(F : \mathbb{R}^6 - \{0\} \to \mathbb{R}^6 \), definida
Superficies en Espacios Euclideanos

por

\[
F(x_1, x_2, x_3, x_4, x_5, x_6) = \begin{cases}
 y_1 = 2x_1x_2 - x_6^2 \\
 y_2 = 2x_2x_3 - x_4^2 \\
 y_3 = 2x_3x_1 - x_5^2 \\
 y_4 = x_4x_5 - \sqrt{2} x_3 x_6 \\
 y_5 = x_5x_6 - \sqrt{2} x_1x_4 \\
 y_6 = x_4x_6 - \sqrt{2} x_2x_5 .
\end{cases}
\]

30. Pruebe que el elipsoide \(E = \{ (x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \} \) es una superficie 2-dimensional de clase \(C^\infty \), difeomorfa a \(S^2 \).

31. Sea \(H = \{ (x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \} \) el hiperboloide de una hoja. Pruebe que \(H \) es una superficie 2-dimensional de clase \(C^\infty \), difeomorfa a \(S^1 \times \mathbb{R} \).

32. (Teorema de la Función Inversa en Superficies). Sean \(M \) y \(N \) superficies de clase \(C^k \) \((k \geq 1) \) y \(\dim M = \dim N \). Si \(f : M \to N \) es una aplicación \(C^k \), tal que para \(x_0 \in M \) la derivada \(Df(x_0) : T_x M \to T_{f(x_0)} N \) es un isomorfismo. Pruebe que existe un conjunto abierto \(U \subset M \), con \(x_0 \in U \), tal que \(f|U_0 : U_0 \to f(U_0) \) es un difeomorfismo \(C^k \).

33. Sean \(M \) y \(N \) superficies de clase \(C^k \) \((k \geq 1) \) y \(\dim M = \dim N \). Si \(f : M \to N \) es una biyección \(C^k \), tal que para cada \(x \in M \) la derivada \(Df(x) : T_x M \to T_{f(x)} N \) es un isomorfismo. Pruebe que \(f \) es un difeomorfismo \(C^k \).

34. Enuncie y demuestre los teoremas de la Forma Local de las Inmersiones, Forma Local de las Submersiones, Teorema de la Función Implicita, y Teorema del Rango en superficies.
35. Sea \(f : \mathbb{R}^3 \rightarrow \mathbb{R} \), dada por \(f(x, y, z) = x^2 + y^2 - z^2 \).

(a) Dados \(a, b > 0 \). Pruebe que para cada \(x \in f^{-1}(a) \) la derivada \(Df(x) : \mathbb{R}^3 \rightarrow \mathbb{R} \) es sobreyectiva (observe que lo mismo ocurre para cada \(y \in f^{-1}(b) \)). Pruebe además que las superficies \(f^{-1}(a) \) y \(f^{-1}(b) \) son difeomorfas. Calcule el espacio tangente \(T_xf^{-1}(a) \) en \(x \in f^{-1}(a) \).

(b) Si \(c < 0 \), pruebe que la superficie \(f^{-1}(c) \) no es difeomorfa a la superficie \(f^{-1}(t) \), donde \(t > 0 \).

(c) ¿Es \(f^{-1}(0) \) una superficie?

(d) Dibuje los conjuntos \(f^{-1}(t) \), para \(t < 0 \), \(t = 0 \), y \(t > 0 \).

36. Sea \(P = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = a \} \), donde \(a > 0 \). Calcule \(T_pP \), donde \(p = (\sqrt{a}, 0, 0) \).

37. Sean \(M \) y \(N \) superficies de clase \(C^k \), con \(k \geq 1 \). Pruebe que para cada \((x, y) \in M \times N \) se tiene que \(T_{(x,y)}M \times N \equiv T_xM \times T_yN \equiv T_xM \oplus T_yN \).

38. Pruebe que \(f : \mathbb{S}^2 \rightarrow \mathbb{S}^2 \) dada por
\[
f(x, y, z) = (x \cos(z) - y \sin(z), x \sin(z) + y \cos(z), z)
\]
es un difeomorfismo \(C^\infty \). Calcule \(Df(x, y, z) \).

39. Pruebe que el conjunto \(\mathbb{M}_p(\mathbb{R}, m \times n) \) de las matrices de rango \(p \), \(1 \leq p \leq \min\{n, m\} \), es una superficie de clase \(C^\infty \). Calcule su dimensión.

40. Sea \(f : M \times N \rightarrow N \) definida por \(f(x, y) = x \). Pruebe que \(Df(x, y) : T_xM \times T_yN \rightarrow T_xM \) es la proyección \(Df(x, y)(u, v) = u \).
41. Sean M y N superficies de clase C^k ($k \geq 1$). Dada una aplicación de clase C^k, $f : M \rightarrow N$, defina $F : M \rightarrow M \times N$ por $F(x) = (x, f(x))$. Pruebe que $DF(x)u = (u, Df(x)u)$.

42. Sean M, N, M', y N' superficies de clase C^k ($k \geq 1$). Sean $f : M \rightarrow N$, $g : M' \rightarrow N'$ aplicaciones C^k, tales que en cada punto $x \in M$ y en cada punto $y \in N$ las derivadas $Df(x)$ y $Dg(y)$ tienen rango r y s, respectivamente. Calcule el rango de $D(f \times g)(x, y)$.

43. Sea $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$ el toro 2-dimensional. Defina la aplicación $\pi : \mathbb{R}^2 \rightarrow \mathbb{T}^2$ definida por $\pi(x, y) = (\exp(2\pi ix), \exp(2\pi iy)) = (\cos(2\pi x), \sin(2\pi x), \cos(2\pi y), \sin(2\pi y))$. Pruebe que π es un difeomorfismo local C^∞.

44. Sea $\varphi_N : \mathbb{S}^2 - \{p_N\} \rightarrow \mathbb{R}^2$ la proyección esterográfica. Sea $A : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ una transformación lineal definida por una matriz diagonal 2×2, con elemento en la diagonal igual a λ con $\lambda \neq 0$. Defina $\varphi : \mathbb{S}^2 \rightarrow \mathbb{S}^2$ por $\varphi(x) = \varphi_N^{-1} \circ A \circ \varphi_N(x)$, cuando $x \in \mathbb{S}^2$ y $x \neq p_N$, y $\varphi(p_N) = p_N$. Pruebe que φ es un difeomorfismo C^∞.

45. Sea $V_{n,k}$ el conjunto de todos los sistemas ordenados ortonormales de k vectores en \mathbb{R}^n. Pruebe que $V_{n,k}$ es una superficie C^∞. Calcule $\dim V_{n,k}$.

46. Sea $f : V_{n,k} \rightarrow V_{n,s}$, donde $s \leq k$, la aplicación que asocia a cada sistema ordenado ortonormal de k vectores en \mathbb{R}^n sus primeros s vectores. Pruebe que para cada punto $p \in V_{n,s}$, la derivada $Df(x) : T_xV_{n,k} \rightarrow T_pV_{n,s}$ es sobreyectiva, para $x \in f^{-1}(p)$. Muestre además, que para cada $p \in V_{n,s}$, la imagen in-
versa $f^{-1}(p)$ es homeomorfa a la superficie $V_{n-s,k-s}$, ¿son estas superficies difeomorfas?

47. Sean M^m una superficie C^k ($k \geq 1$) y $U \subset M$ un conjunto abierto. Una incrustación C^k de U en una superficie N^n es una aplicación C^k, $f : U \to N^n$ que es un homeomorfismo sobre su imagen y para cada $x \in U$ la derivada $Df(x) : T_xM \to T_{f(x)}N$ es inyectiva.

a) Pruebe que existe una incrustación C^∞ desde $S^n \times S^m$ en \mathbb{R}^{n+m+1}.

b) Sea $M^m \subset \mathbb{R}^\ell$ una superficie de clase C^r ($r \geq 1$). Suponga que existe una incrustación C^r, $f : M \to \mathbb{R}^{n+1}$ para algún n, suponga además que existe una aplicación C^r, $g : V \to \mathbb{R}$, donde $V \subset \mathbb{R}^{n+1}$ es una vecindad de $f(M)$, tal que para cada $y \in V$ se tiene que grad $g(y) \neq 0$ y $f(M) = g^{-1}(0)$. Pruebe que M es una superficie orientable.

48. Sea M una superficie compacta de clase C^k, con $k \geq 1$. Pruebe que cada aplicación C^1, $f : M \to \mathbb{R}$ posee al menos dos puntos críticos, es decir, puntos en los cuales $Df(x) = 0$.

49. Sea $\mathbb{T}^2 \subset \mathbb{R}^3$ el toro 2-dimensional, como muestra la figura siguiente,
(a) Definamos $A : T^2 \to T^2$ por $A(p) = -p$. Pruebe que A es un difeomorfismo de clase C^∞.

(b) Sea $f : T^2 \to \mathbb{R}$ una aplicación de clase C^k, con $k \geq 1$. Describa los puntos críticos de f.

50. Sean M y N superficies de clase C^k, y sea $f : M \to N$ una aplicación C^k. Pruebe que el rango de f es independiente de la elección de parametrizaciones usado para definirlo.

Nota. Recuerde que el rango de f en un punto p es el rango de la aplicación lineal $Df(p)$.

51. Sean M y N superficies de clase C^k ($k \geq 1$), con $\dim M = \dim N$. Sea $f : M \to N$ una inmersión C^k. Pruebe que si N es compacta y M es conexa entonces f es sobreyectiva.

52. Sean M y N superficie de clase C^k, y sea $f : M \to N$ una aplicación continua. Pruebe que f es de clase C^k si, y sólo si, para cualquier función C^k, $F : W \subset N \to \mathbb{R}$, donde W abierto, la función $F \circ f$ es de clase C^k en el conjunto $f^{-1}(W)$.
53. Dada $F : \mathbb{R}^2 \to T^2$ definida por $F(x, y) = (\exp(2\pi ix), \exp(2\pi iy))$, donde consideramos $T^2 = S^1 \times S^1$. Sea $G : \mathbb{R} \to \mathbb{R}^2$ dada por $G(t) = (t, \alpha t)$. Pruebe que $F \circ G$ es una inmersión. Estudie $(F \circ G)(\mathbb{R})$ según α sea racional o irracional.

54. Sea $f : U \to U$ una aplicación C^k ($k \geq 1$), donde $U \subset \mathbb{R}^m$ es un conjunto abierto y conexo. Si $f \circ f = f$, defina $M = f(U)$. Pruebe que si el rango de $Df(x)$ es constante, para todo x en una vecindad de M, entonces M es una superficie C^k ¿cuál es la dimensión de M?

55. Encuentre una inmersión de clase C^∞, $f : S^1 \times S^1 \to \mathbb{R}^3$.

56. Sea M una superficie de clase C^k. Pruebe que la aplicación diag : $M \to M \times M$, diag(x) = (x, x) es de clase C^k.

57. Sea $T^2 \subset \mathbb{R}^3$ el toro 2-dimensional centrado en el origen, y sea $f : T^2 \to \mathbb{R}$ la función altura respecto al plano xy. Estudie la función f relativa a diferentes posiciones de T^2, es decir, describa los conjuntos de puntos críticos, valores regulares, y los diferentes conjuntos $f^{-1}(c)$, donde $c \in \mathbb{R}$.

58. Sea $T^2 \subset \mathbb{R}^3$ el toro 2-dimensional. Sea $f : T^2 \to S^2$ la aplicación que a cada $p \in T^2$ asocia el vector normal unitario $v_p \in \mathbb{R}^3$, caracterizado como sigue: si $\{v_1, v_2\} \subset T_pT^2$ es la base canónica de T_pT^2, entonces $\det(v_1, v_2, v_p) > 0$. Pruebe que f es C^∞. Calcule $Df(p)$ para $p \in T^2$.

59. Sean M, N superficies de clase C^k, con M compacta y $\dim M = \dim N$. Dada una aplicación de clase C^k, $f : M \to N$, sea $y_0 \in$
N un valor regular de \(f \). Pruebe que la imagen inversa \(f^{-1}(y_0) \) consiste de un número finito de puntos.

60. Sea \(C = \{(x, y, z) : x^2 + y^2 = 1\} \) (cilindro circular recto) en \(\mathbb{R}^3 \).

Sea \(A : C \rightarrow C \) la aplicación \(A(x, y, z) = -(x, y, z) \). Demuestre que \(A \) es un difeomorfismo de clase \(C^\infty \).

61. Pruebe que la aplicación \(h : \mathbb{R}^2 - \{(0, 0)\} \rightarrow \mathbb{S}^1 \times \mathbb{R} \) dada por

\[
h(x, y) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}, \log \left(\sqrt{x^2 + y^2} \right) \right)
\]

es un difeomorfismo de clase \(C^\infty \).

62. (a) Sean \(M, N \) superficies \(C^k \), con \(M \) compacta y \(N \) conexa.

Pruebe que si \(f : M \rightarrow N \) es una submersión, entonces \(f \) es sobreyectiva.

(b) Pruebe que no existen submersiones de superficies compactas en espacios euclideanos.

63. Sea \(p \) un polinomio homogéneo en \(k \) variables, es decir,

\[
p(tx_1, \ldots, tx_k) = t^m p(x_1, \ldots, x_k),
\]

para algún \(m \in \mathbb{N} \).

Pruebe que el conjunto de puntos \(x \in \mathbb{R}^k \), tales que \(p(x) = a \), con \(a \neq 0 \), es una superficie de clase \(C^\infty \) y dimensión \(k - 1 \) de \(\mathbb{R}^k \). Además, pruebe que las superficies obtenidas para \(a > 0 \) son todas difeomorfas y lo mismo ocurre para el caso \(a < 0 \), ¿son las superficies obtenidas para \(a_1 < 0 \) y \(a_2 > 0 \) difeomorfas?

Indicación. Use la identidad de Euler para polinomios homogéneos,

\[
\sum_{i=1}^{k} x_i \frac{\partial p(x)}{\partial x_i} = mp(x), \quad \text{donde} \quad x = (x_1, \ldots, x_k)
\]
64. Sea \(S_{p,q} \subset \mathbb{R}^n \) el conjunto
\[
S_{p,q} = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2 = 1\},
\]
donde \(p + q \leq n \). Pruebe que \(S_{p,q} \) es una superficie \(C^\infty \) de \(\mathbb{R}^n \), la cual es difeomorfa a \(S^{p-1} \times \mathbb{R}^{n-q} \).

Indicación. Considere la aplicación \(f : S^{p-1} \times \mathbb{R}^{n-q} \to S_{p,q} \), dada por
\[
f(x_1, \ldots, x_p, y_1, \ldots, y_{n-p}) = (x_1 z, \ldots, x_p z, y_1, \ldots, y_{n-p}),
\]
donde \(z = \sqrt{1 + y_1^2 + \cdots + y_q^2} \).

65. Sea \(f : \mathbb{R}^3 \to \mathbb{R} \) definida por \(f(x, y, z) = z^2 \). Demostrar que 0 no es valor regular de \(f \), pero \(f^{-1}(0) \) es una superficie de clase \(C^\infty \). ¿Explique por qué esto puede ocurrir?

66. Sea \(P = \{(x, y, z) \in \mathbb{R}^3 : x = y\} \), y sea \(\varphi : U \to \mathbb{R}^3 \) definida por \(\varphi(u, v) = (u + v, u + v, uv) \), donde \(U = \{(u, v) \in \mathbb{R}^2 : u > v\} \).
Pruebe que \(\varphi(U) \subset P \). ¿Es \(\varphi \) una parametrización para \(P \)?

67. Encuentre la ecuación del plano tangente a la superficie definida por el gráfico de \(z = 2xe^{x^2+y^3-x+y-2} \) en el punto \((1, 1, 2)\).

68. Defina \(f : \mathbb{R}^3 \to \mathbb{R} \) por \(f(x, y, z) = (x + y + z - 1)^2 \).

(a) Encuentre el conjunto de puntos críticos de \(f \).

(b) ¿Para qué valores de \(c \in \mathbb{R} \) el conjunto \(M = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = c\} \) es una superficie?

(c) Responda las misma cuestiones anteriores, pero esta vez considere la aplicación \(g(x, y, z) = xyz^2 \).
69. Sea \(\varphi : U \subset \mathbb{R}^2 \rightarrow V \subset \mathbb{R}^3 \) una aplicación de clase \(C^r \) \((r \geq 1)\), donde \(U \) es abierto en \(\mathbb{R}^2 \). Pruebe que \(D\varphi(u,v) : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) es inyectiva si, y sólo si, \(\frac{\partial \varphi(u,v)}{\partial u} \times \frac{\partial \varphi(u,v)}{\partial v} \neq 0 \), donde \(\times \) es el producto vectorial en \(\mathbb{R}^3 \).

70. Sea \(S^2 \subset \mathbb{R}^3 \) la esfera unitaria, y sea \(H = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 - 1 = 0\} \). Denote por \(p_N = (0, 0, 1) \) y \(p_S = (0, 0, -1) \) los polos norte y sur de la esfera, respectivamente. Demuestre que \(S^2 - \{p_N, p_S\} \) y \(H \) son difeomorfas. (Construya el difeomorfismo)

71. Determine los planos tangentes a la superficie \(M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = 1\} \) en los puntos \((x, y, 0)\) y demuestre que todos ellos son paralelos al eje \(z \).

72. Demuestre que la ecuación del plano afín, tangente a una superficie que es el gráfico de una aplicación diferenciable \(f : U \subset \mathbb{R}^2 \rightarrow \mathbb{R} \), donde \(U \) es un conjunto abierto, en un punto \(p_0 = f(x_0, y_0) \) viene dado por

\[
z = f(x_0, y_0) + \frac{\partial f(x_0, y_0)}{\partial x}(x - x_0) + \frac{\partial f(x_0, y_0)}{\partial y}(y - y_0).
\]

73. Demuestre que las ecuaciones

\[
\begin{align*}
x^2 + y^2 + z^2 &= ax \quad (a \neq 0) \\
x^2 + y^2 + z^2 &= by \quad (b \neq 0) \\
x^2 + y^2 + z^2 &= cz \quad (c \neq 0)
\end{align*}
\]
definen superficies de clase \(C^\infty \), y que todas ellas se cortan ortogonalmente.

Nota. Sean \(M \) y \(N \) superficies de clase \(C^k \) \((k \geq 1)\) en \(\mathbb{R}^\ell \). Supongamos que \(M \cap N \neq \emptyset \). Dado \(p \in M \cap N \), decimos que
las superficies son ortogonales en p si, sus planos tangente T_pM y T_pN son ortogonales.

74. Considere una superficie de clase $C^r \ (r \geq 1) \ M \subset \mathbb{R}^3$. En cada plano tangente $T_pM \ (p \in M)$ se define un producto interno, denotado por $\langle \ , \rangle_p$, como sigue: sean $v, w \in T_pM$ entonces $\langle v, w \rangle_p = \langle v, w \rangle$. Defina $I_p : T_pM \rightarrow \mathbb{R}$ por $I_p(v) = \langle v, v \rangle_p$. Usando una parametrización $\varphi : U \subset \mathbb{R}^2 \rightarrow V \subset M$, con $\varphi(u_0, v_0) = p$ encuentre la expresión para I_p en término de la base $\left\{ \frac{\partial \varphi(u_0, v_0)}{\partial u}, \frac{\partial \varphi(u_0, v_0)}{\partial v} \right\}$ de T_pM.

75. Sea $\varphi :]0,2\pi[\times \mathbb{R} \rightarrow \mathbb{R}^3$ dada por $\varphi(u, v) = (v \cos(u), v \sin(u), au) \ (a \neq 0)$. Pruebe que $\text{Im}(\varphi)$ es una superficie de clase C^∞. Haga el dibujo de la superficie.

76. Sea $M \subset \mathbb{R}^3$ una superficie 2–dimensional de clase C^∞, y sea $\varphi : U_0 \subset \mathbb{R}^2 \rightarrow V \subset M$ una parametrización. Definimos $N : V \subset M \rightarrow \mathbb{R}^3$ por

$$N(\varphi(u, v)) = \frac{\frac{\partial \varphi(u, v)}{\partial u} \times \frac{\partial \varphi(u, v)}{\partial v}}{\left\| \frac{\partial \varphi(u, v)}{\partial u} \times \frac{\partial \varphi(u, v)}{\partial v} \right\|}.$$

Dada otra parametrización $\psi : U_1 \subset \mathbb{R}^2 \rightarrow V \subset M$, siendo que en U_1 tenemos coordenadas (u_1, v_1) ¿Cuál es la relación entre $N(\psi(u_1, v_1))$ y $N(\varphi(u, v))$?

77. Sea $M = f^{-1}(0)$, donde $f : U \subset \mathbb{R}^3 \rightarrow \mathbb{R} \ (U \text{ abierto})$ una aplicación de clase $C^r \ (r \geq 1)$ y 0 es un valor regular de f. Calcule $N(x, y, z)$ explícitamente.

78. Encuentre parametrizaciones para la superficie obtenida rotando la catenaria $y = a \cosh(x/a)$ alrededor del eje x. La superficie obtenida es llamada catenoide.
79. Demuestre que rotando la curva \(\rho(t) = (a \log(\tan(\frac{\pi}{4} + \frac{t}{2})) - a \sin(t), a \cos(t)) \) alrededor de su asintóta se obtiene una superficie 2-dimensional de clase \(C^\infty \), llamada pseudoesfera (encuentre las parametrizaciones explícitamente).

80. Considere las ecuaciones
\[
\begin{align*}
x &= u \cos(v) \\
y &= u \sin(v) \\
z &= a \sin(2v)
\end{align*}
\]
¿definen estas ecuaciones una superficie?. Si la respuesta es afirmativa, calcule la intersección de esta superficie y un plano tangente a ella en uno de sus puntos.

81. Encuentre el plano tangente y el espacio normal a la superficie determinada por la ecuación
\[
\begin{align*}
x &= v \cos(u) \\
y &= v \sin(v) \\
z &= ku & (k > 0 \text{ constante})
\end{align*}
\]
Encuentre parametrizaciones para esta superficie.

82. Encuentre parametrizaciones para cada superficie definida por las ecuaciones siguientes:

(a)
\[
\begin{align*}
x &= a \cos(u) \cos(v) \\
y &= a \sin(u) \cos(v) \\
z &= a \sin(v)
\end{align*}
\]
donde \(a > 0 \) (esfera).
(b) \[\begin{aligned} x &= a \cos(u) \cos(v) \\ y &= b \sin(u) \cos(v) \\ z &= c \sin(v) \end{aligned} \]

\(a, b, c > 0 \) (elipsoide)

(c) \[\begin{aligned} x &= \frac{a}{2} \left(v + \frac{1}{v} \right) \cos(u) \\ y &= \frac{b}{2} \left(v + \frac{1}{v} \right) \sin(u) \\ z &= \frac{c}{2} \left(v + \frac{1}{v} \right) \end{aligned} \]

\(a, b, c > 0 \) (hiperboloide de una hoja)

(d) \[\begin{aligned} x &= \frac{a}{2} \frac{uv + 1}{2v + u} \\ y &= \frac{b}{v + u} \frac{v - u}{uv + 1} \\ z &= \frac{c}{v + u} \frac{uv - 1}{uv + 1} \end{aligned} \]

\(a, b, c > 0 \) (hiperboloide de una hoja)

(e) \[\begin{aligned} x &= \frac{a}{2} \left(v - \frac{1}{v} \right) \cos(u) \\ y &= \frac{b}{2} \left(v - \frac{1}{v} \right) \sin(u) \\ z &= \frac{c}{2} \left(v - \frac{1}{v} \right) \end{aligned} \]
a, b, c > 0 (hiperboloide de dos hoja)

\begin{align*}
\begin{cases}
x = v\sqrt{p}\cos(u) \\
y = v\sqrt{q}\sin(u) \\
z = v^2/2
\end{cases}
\end{align*}

p, q > 0 (paraboloide elíptico)

\begin{align*}
\begin{cases}
x = (u + v)\sqrt{p} \\
y = (u - v)\sqrt{q} \\
z = 2uv
\end{cases}
\end{align*}

p, q > 0 (hiperboloide parabólico)

\begin{align*}
\begin{cases}
x = a\cos(u) \\
y = b\sin(u) \\
z = v
\end{cases}
\end{align*}

a, b > 0 (cilindro elíptico)

\begin{align*}
\begin{cases}
x = u\cos(v) \\
y = u\sin(v) \\
z = u^2/2
\end{cases}
\end{align*}

(paraboloide de revolución)

83. Para cada una de las superficies dadas en el ejemplo anterior, encuéntre el plano tangente y un vector normal unitario a este plano en un punto arbitrario de ellas.
84. Demuestre que las ecuaciones
\[
\begin{align*}
x &= \frac{1}{2} \cos(u) \cos(\phi) \\
y &= \frac{1}{2} \cos(u) \sin(\phi) \\
z &= \int \sqrt{1 - \frac{1}{4} \sin^2(u)} \ du
\end{align*}
\]
definen una superficie 2–dimensional de clase C^∞. Determine parametrizaciones para ella.

85. Sea $\varphi : U_0 \subset \mathbb{R}^2 \to V \subset \mathbb{R}^3$ una parametrización de clase C^k ($k \geq 1$) (U_0 abierto). Para cada $p = \varphi(u, v) \in V$, se define el vector normal a V en p por
\[
N(p) = \frac{\frac{\partial \varphi(u,v)}{\partial u} \times \frac{\partial \varphi(u,v)}{\partial v}}{\left| \frac{\partial \varphi(u,v)}{\partial u} \times \frac{\partial \varphi(u,v)}{\partial v} \right|}.
\]
Demuestre que $N : V \to \mathbb{R}^3$ tiene su imagen contenida en la esfera unitaria $S^2 \subset \mathbb{R}^3$, es de clase C^{k-1}, y se tiene $T_p V = T_{N(p)} S^2$.

86. Considere las superficies $M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = 1\}$ y $S^2_a = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = a^2\}$ ($a > 0$). Encuentre los valores de a tales que $M \cap S^2_a \neq \emptyset$, y para cada $p \in M \cap S^2_a$ se tiene que $\mathbb{R}^3 = T_p S^2_a + T_p M$.

87. Enuncie y pruebe los teoremas de la Función inversa, de la Forma local de las Inmersiones y de la Forma local de las Submersiones en superficies.

88. Encuentre el tangente y el plano normal a las siguientes curvas (superficies 1–dimensionales)
(a) \[E = \{ (a \cos(t), b \sen(t)) : 0 \leq t \leq 2\pi \}. \]

(b) \[H = \left\{ \left(\frac{a}{2} \left(t + \frac{1}{t} \right), \frac{b}{2} \left(t - \frac{1}{t} \right) \right) : t \neq 0 \right\} \]

89. Calcule el ángulo con que se cortan las curvas definidas por las ecuaciones \(x^2 + y^2 = 8 \) y \(y^2 = 2x \).

90. Encuentre el plano tangente en el punto \(p = (2, -1, 1) \) al hiperboloide definido por la ecuación: \(x^2 + y^2 - 4z^2 = 1 \).

91. Sea \(M = \{ (x, y, z) : xy = 0, \ x^2 + y^2 + z^2 = 1, \ z \neq \pm 1 \} \).
Demuestre que \(M \) es una superficie 1-dimensional ¿Cuál es su clase de diferenciabilidad?

92. Sea \(J \subset \mathbb{R} \) un intervalo abierto, y sean \(f, g : J \to \mathbb{R} \) aplicaciones de clase \(C^r \) \((r \geq 1)\).

(a) Demuestre que el conjunto \(M = \{ (x, f(x), g(x)) : x \in J \} \)
es una superficie 1-dimensional de clase \(C^r \). Construya al menos dos ejemplos usando lo anterior.

(b) Sea \(p \in M \). Calcule \(T_p M \).

93. Demuestre que el conjunto \(M = \{ (x, y) : x^y = y^x, \ x > 0, \ y > 0, \ (x, y) \neq (e, e) \} \) es una superficie 1-dimensional ¿Cuál es su clase de diferenciabilidad?

94. Sea \(M = \{ (x, y, z) : xy = xz = 0 \} \) ¿es \(M \) una superficie?

95. Sea \(M = \{ x \in \mathbb{R}^n : \sum_{i,j=1}^{n} c_{ij} x_i x_j = 1 \}, \) donde la matriz \((c_{ij})_{i,j=1,...,n} \) es una simétrica y tiene rango \(n \).

(a) Demuestre que \(M \) es una superficie \((n - 1)\)-dimensional de clase \(C^\infty \).
(b) Sea \(p \in M \). Calcule \(T_pM \).

96. Sean \(C = \{(x, y, u, v) \in \mathbb{R}^4 : x^2 + y^2 = 1, \ u^2 + v^2 = 1\} \), \(K = \{(x, y, u, v) \in \mathbb{R}^4 : x^2 + y^2 \leq 1, \ u^2 + v^2 \leq 1\} \).

(a) Demuestre que \(C \) es una superficie 2-dimensional de clase \(C^\infty \).

(b) Demuestre que \(K \) es una superficie de clase \(C^\infty \), con borde ¿Cuál es \(\partial K \) ?

97. Sea \(M^2 \subset \mathbb{R}^3 \) una superficie \(C^k \ (k \geq 2) \). En cada punto \(p \in M \) se define el producto interno \(\langle \cdot, \cdot \rangle_p \) sobre \(T_pM \) como sigue: para cada \(v, w \in T_pM \) hacemos \(\langle v, w \rangle_p = \langle v, w \rangle \) (donde \(\langle \cdot, \cdot \rangle \) es el producto interno usual en \(\mathbb{R}^3 \)).

98. Usando una parametrización para \(M \), encuentre la expresión local de \(\langle \cdot, \cdot \rangle_p \).

99. Defina \(I_p : T_pM \to \mathbb{R} \) por \(I_p(v) = \langle v, v \rangle_p \). Encuentre, usando parametrizaciones, la expresión local de \(I_p \). (Nota: la aplicación \(I_p \) es llamada \textit{primera forma fundamental} de la superficie.)

100. Calcule la primera forma fundamental de las siguientes superficie, en la parametrización indicada (en cada caso determine el dominio de la parametrización.)

(a) Esfera de centro en el origen y radio \(a > 0 \), con una parametrización dada por \(\varphi(u, v) = (a \cos(u) \cos(v), a \sen(u) \cos(v), a \sen(v)) \).

(b) Elipsoide, con una parametrización dada por \(\varphi(u, v) = (a \cos(u) \cos(v), b \sen(u) \cos(v), c \sen(v)) \).
(c) Hiperboloide de una hoja, con una parametrización dada por
\[\varphi(u, v) = \left(\frac{a}{2} (v + \frac{1}{v}) \cos(u), \frac{b}{2} (v + \frac{1}{v}) \sin(u), \frac{c}{2} (v + \frac{1}{v}) \right). \]

(d) Hiperboloide de una hoja, con una parametrización dada por
\[\varphi(u, v) = \left(\frac{a}{2} \frac{uv + 1}{u + v}, \frac{b}{2} \frac{v - u}{u + v}, \frac{c}{2} \frac{uv - 1}{u + v} \right). \]

(e) Hiperboloide de dos hojas, con una parametrización dada por
\[\varphi(u, v) = \left(\frac{a}{2} (v - \frac{1}{v}) \cos(u), \frac{b}{2} (v - \frac{1}{v}) \sin(u), \frac{c}{2} (v - \frac{1}{v}) \right). \]

(f) Paraboloide elíptico, con una parametrización dada por \(\varphi(u, v) = (v \sqrt{p} \cos(u), v \sqrt{q} \sin(u), v^2 / 2) \).

(g) Hiperboloide parabólico, con una parametrización dada por
\[\varphi(u, v) = \left((u + v) \sqrt{p}, (u - v) \sqrt{q}, 2uv \right). \]

(h) Cilindro elíptico, con una parametrización dada por \(\varphi(u, v) = (a \cos(u), b \sin(u), cv) \).

(i) Helicoide minimal, con una parametrización dada por \(\varphi(u, v) = (v \cos(u), v \sin(u), ku) \).

(j) Toro, con una parametrización dada por \(\varphi(u, v) = ((a + b \cos(v)) \cos(u), (a + b \cos(v)) \sin(u), b \sin(v)) \).

(k) Gráfico de una aplicación \(C^k \) \((k \geq 1) \), \(f : U \subset \mathbb{R}^2 \to \mathbb{R} \), donde \(U \) es abierto.

En cada caso anterior visualice la superficie en cuestión usando Maplev u otro software adecuado (por ejemplo, Mathematica, Derive, etc.)

101. Sea \(F(x, y) = e^{x^2 + 2y^2 + 2} \). Encuentre el conjunto de valores \(c \in \mathbb{R} \) para los cuales el conjunto \(F^{-1}(c) \) es una superficie (no vacía), y calcule en esos casos \(T_p F^{-1}(c) \), donde \(p \in F^{-1}(c) \) es un punto arbitrario.
102. Encuentre el plano tangente a la superficie definida por la ecuación \(\cos(x) \cos(y) e^z = 0 \) en el punto \(\left(\frac{\pi}{2}, 1, 0 \right) \).

103. Sea \(C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\} \) el cilindro unitario en \(\mathbb{R}^3 \), y sea \(M = S^2 - \{p_N, p_S\} \) la esfera unitaria sin los polos norte y sur. Para cada \((0, 0, z), \) con \(-1 < z < 1\), el rayo comenzando en ese punto y paralelo al plano \(xy \), intersecta a la esfera (cilindro) en un único punto, eso nos permite definir una aplicación \(f : S^2 - \{p_N, p_S\} \to C \). Demuestre que \(f \) es un difeomorfismo \(C^\infty \) sobre su imagen. Calcule \(Df(p) \).

104. Sea \(C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\} \) el cilindro unitario en \(\mathbb{R}^3 \), y sea \(M = S^2 - \{p_N, p_S\} \) la esfera unitaria sin los polos norte y sur. Cada rayo comenzando en el origen intersecta a la esfera (cilindro) en un único punto, eso nos permite definir una aplicación \(f : S^2 - \{p_N, p_S\} \to C \). Demuestre que \(f \) es un difeomorfismo \(C^\infty \).

105. Sean \(f, g : I \to \mathbb{R} \) funciones de clase \(C^k \) \((k \geq 1) \), donde \(I \subset \mathbb{R} \) es un intervalo abierto. Suponga que \(g(u) > 0 \) para todo \(u \in I \). Demuestre que el subconjunto de \(\mathbb{R}^3 \) obtenido rotando la curva cuya traza es el conjunto de punto \(\{(f(u), g(u)) : u \in I\} \) es una superficie de clase \(C^k \), llamada superficie de rotación. Calcule el espacio tangente a la superficie de rotación en un punto arbitrario.

106. Considere la curva \(\alpha : \mathbb{R} \to \mathbb{R}^2 \) definida por \(\alpha(u) = \left(u, \frac{e^u + e^{-u}}{2} \right) \). Demuestre que la superficie de rotación obtenida desde la traza de \(\alpha \) es difeomorfa a la superficie \(H = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = 1\} \).

107. Describa los conjuntos de nivel de las siguientes funciones,
(a) \(g(x, y, z) = \frac{1}{x^2 + 4y^2 + 9z^2} \) para \(c = 0 \), \(c = 1/2 \), y \(c = 1 \).

(b) \(h(x, y, z) = 2x^2 - y^2 - z^2 \), para \(c = 1 \) y para \(c = 0 \).

108. Sea \(T(x, y, z) = x^3 - yz^3 \). Sea \(c(t) \) la curva en \(\mathbb{R}^3 \) que satisface \(c'(t) = \text{graf} T(c(t)) \) y \(c(0) = (1, 1, 0) \). Demuestre que \(c'(0) \) es perpendicular a la superficie definida por la ecuación \(x^3 - yz^3 = 1 \).

109. Sea \(f : \mathbb{R}^3 \to \mathbb{R} \) una función que es constante sobre la esfera de radio 1. Sea \(c : \mathbb{R} \to S^2 \) curva diferenciable sobre la esfera. Demuestre que \(c'(t) \) es ortogonal a \(\text{grad} f(c(t)) \) para todo \(t \).

110. Encuentre los puntos en el elipsoide \(x^2 + 2y^2 + 3z^2 = 1 \) donde el plano tangente es paralelo al plano \(3x - y + 3z = 1 \).

111. Demuestre que el elipsoide \(3x^2 + 2y^2 + z^2 = 9 \) y la esfera \(x^2 + y^2 + z^2 - 8x - 8y - 8z + 24 = 0 \) son tangentes en el punto \((1, 1, 2) \) (recuerde que dos superficies \(S_1 \) y \(S_2 \) son tangentes en un punto en común, digamos \(p \), si \(T_pS_1 = T_pS_2 \)).

112. Sea \(h : S^2 \to \mathbb{R} \) la función altura respecto del plano horizontal. Usando las parametrizaciones polo-norte y polo-sur, encuentre los puntos donde \(h \) no es submersión y aquellos donde lo es.

113. Sea \(p : S^2 \to \mathbb{R}^2 \) la función proyección sobre el plano horizontal. Usando las parametrizaciones polo-norte y polo-sur, encuentre los puntos donde \(p \) no es difeomorfismo y aquellos donde lo es.

114. Sea \(M = \{ A = (a_{ij})_{3 \times 3} : A \text{ de rango 1 } \} \). Demuestre que \(M \) es una superficie 5-dimensional de clase \(C^\infty \). Calcule el espacio tangente a \(M \) en \(A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \).
115. Sea $F : \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}^2$ la aplicación definida por $F(p, v) = ((||p||^2 - 1)/2, \langle p, v \rangle)$. Pruebe que F es de clase C^∞ y que su derivada viene dada por

$$DF(p, v) = \begin{pmatrix} p & 0 \\ v & p \end{pmatrix}.$$

Muestre además, que $\det(DF(p, v)(DF(p, v))^T) = ||p||^2(||p||^2 + ||v||^2) = 1 + ||v||^2 > 0$ sobre el conjunto $F^{-1}(0, 0)$. Concluya de esto que el conjunto

$$F^{-1}(0, 0) = \{ (p, v) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} : ||p|| = 1, \ y \ \langle p, v \rangle = 0 \}$$

es una superficie de clase C^∞ y dimensión $2n$ en \mathbb{R}^{2n+2}.

116. Sea $F : \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}^2$ la aplicación definida por $F(x, y) = \frac{1}{2} (||x||^2 + ||y||^2, ||x||^2 - ||y||^2)$. Pruebe que F es de clase C^∞. Describa el conjunto de valores críticos \mathcal{R} de F. Determine en qué casos los conjuntos \mathcal{R} y $F^{-1}(1, 0)$ son superficies.
Superficies en Espacios Euclideanos
Capítulo 8

Orientación en superficies

En este capítulo estudiaremos el concepto de superficie orientable. Primero estudiamos orientación en espacios vectoriales, enseguida extendemos este concepto a superficies.

8.1 Orientación en Espacios Vectoriales

Sea V un espacio vectorial real de dimensión m. Una base ordenada en V es un conjunto ordenado $\mathcal{E} = \{v_1, \ldots, v_m\}$ de m vectores linealmente independientes. Si $\mathcal{F} = \{w_1, \ldots, w_m\}$ es otra base ordenada de V, entonces existe una única matriz $A \in \text{GL}(m, \mathbb{R})$, $A = (a_{ij})_{m \times m}$, tal que $w_k = \sum_{i=1}^{m} a_{ki}v_i$ para $k = 1, 2, \ldots, m$. La matriz A es llamada matriz cambio de base, de la base \mathcal{E} para la base \mathcal{F}. Dadas dos bases ordenadas \mathcal{E} y \mathcal{F} de V, decimos que ellas son equivalentes y usamos la notación $\mathcal{E} \equiv \mathcal{F}$, sea la matriz cambio de base tiene determinante positivo. Si $B = \{\mathcal{E} : \mathcal{E} es base ordenada de V\}$, la equivalencia de bases es una relación de equivalencia en B. Como cada matriz en $\text{GL}(m, \mathbb{R})$ tiene determinante positivo o negativo, existen sólo dos clases de equivalencia.
en \mathcal{B}/ \equiv, y cada clase de equivalencia es llamada una orientación en V, es decir, una orientación en V es un conjunto Θ de bases ordenadas de V con la propiedad siguiente: si $\mathcal{E} \in \Theta$ y $\mathcal{F} \in \mathcal{B}$, entonces $\mathcal{F} \in \Theta$ si, y sólo si, la matriz cambio de base de la base \mathcal{E} para la base \mathcal{F} tiene determinante positivo. Dada una orientación Θ de V la otra orientación la denotamos por $-\Theta$ y es llamada la orientación opuesta de Θ.

Definición 8.1 Un espacio vectorial orientado es un par (V, Θ), donde V es un espacio vectorial de dimensión finita y Θ es una orientación de V.

En lo que sigue, consideramos \mathbb{R}^n orientado con la orientación Θ determinada por (es decir, que contiene a) la base canónica $\{e_1, \ldots, e_n\}$, donde e_i es el i-ésimo vector de la base canónica de \mathbb{R}^n.

Ejemplo La base $\{v_1, v_2\}$ de \mathbb{R}^2 dada en la figura representa la misma orientación que la base canónica $\{e_1, e_2\}$.

En un espacio vectorial orientado (V, Θ), las bases que pertenecen a Θ son llamadas bases positivas y las otras son llamadas bases negativas.

Observación. Tenemos que $\mathcal{B}/ \equiv = \{\Theta, -\Theta\}$. Además,
1. Si $A, B \in \Theta$ entonces el determinante de a matriz cambio de base es positivo,

2. Si $F, G \in -\Theta$ entonces el determinante de la matriz cambio de base es positivo,

3. Si $A \in \Theta$ y $F \in -\Theta$ entonces el determinante del cambio de base es negativo.

Definición 8.2 Sean (V, Θ) y (W, Θ') espacios vectoriales orientados, con $\dim V = \dim W$. Decimos que un isomorfismo $T : V \rightarrow W$ es positivo si preserva las orientaciones, es decir, T lleva bases positivas de V en bases positivas de W. Si T no es positivo, decimos que es negativo.

Proposición 8.1 Sea $T : \mathbb{R}^m \rightarrow \mathbb{R}^m$ un isomorfismo. Entonces T es positivo si, y sólo si, la matriz de T relativa a la base canónica de \mathbb{R}^m tiene determinante positivo.

Demostración. Inmediata.

Proposición 8.2 Sean V y W espacios vectoriales, con $\dim V = \dim W$. Sea $T : V \rightarrow W$ un isomorfismo. Si uno de los espacios vectoriales está orientado, entonces existe una única orientación en el otro que torna a T un isomorfismo positivo.

Demostración. Supongamos que V está orientado y sea Θ una orientación en V. Si $\mathcal{E} = \{v_1, \ldots, v_m\}$ es una base en Θ, entonces $\mathcal{F} = T(\mathcal{E}) = \{T(v_1), \ldots, T(v_m)\}$ es una base de W, sea Θ' la orientación de W determinada por \mathcal{F}. Es claro que con estas orientaciones de V y de W, T es un isomorfismo positivo. La unicidad de Θ' es obvia.
Si W está orientado, la prueba es análoga, tomando esta vez el isomorfismo $T^{-1} : W \to V$.

8.2 Superficies Orientables

Sean M y N superficies diferenciales de clase C^k, con $k \geq 1$ y $\dim M = \dim N$. Para cada $x \in M$ y cada $y \in N$ elegimos orientaciones Θ_x de T_xM y $\tilde{\Theta}_y$ de T_yN, respectivamente.

Definición 8.3 Sea $f : M \to N$ un difeomorfismo local C^k. Decimos que f es positivo, respecto a las orientaciones Θ_x y $\tilde{\Theta}_y$ elegidas en T_xM y T_yN, respectivamente, si para cada $x \in M$ el isomorfismo $Df(x) : T_xM \to T_{f(x)}N$ es positivo.

Análogamente, definimos difeomorfismo local negativo.

Observación. Existen difeomorfismos locales que no son positivos ni negativos.

Definición 8.4 Sea M^m una superficie de clase C^k, con $k \geq 1$. Una orientación en M es una correspondencia Θ que asocia a cada $x \in M$ una orientación Θ_x de T_xM, de modo que cada $x \in M$ pertenece a la imagen de una parametrización positiva $\varphi : U_0 \subset \mathbb{R}^m \to U \subset M$, es decir, para cada $x \in U$ el isomorfismo $D\varphi(\varphi^{-1}(x)) : \mathbb{R}^m \to (T_xM, \Theta_x)$ preserva orientación.

Definición 8.5 Una superficie orientada es un par (M, Θ), donde M es una superficie y Θ es una orientación en M.

Definición 8.6 Decimos que una superficie M es orientable si es posible definir una orientación Θ en M.
Si \((M, \Theta)\) es una superficie orientada y \(-\Theta\) es la correspondencia que asocia a cada \(x \in M\) la orientación \(-\Theta_x\) de \(T_xM\), opuesta de \(\Theta_x\), entonces \(-\Theta\) también es una orientación en \(M\), llamada orientación opuesta de \(\Theta\).

Ejemplos.

1. Todo espacio vectorial es orientable, en particular \(\mathbb{R}^m\), es orientable.

2. Todo subconjunto abierto de una superficie orientable es una superficie orientable.

 En efecto, sea \(M^m\) una superficie orientable de clase \(C^k\), con \(k \geq 1\). Si \(A \subset M\) es un conjunto abierto, entonces \(A\) es una superficie de la misma clase y la misma dimensión que \(M\). Además, para cada \(x \in A\), se tiene que \(T_xA = T_xM\). Luego una orientación de \(M\) determina de modo natural una orientación en \(A\), asociando a cada \(x \in A\) la orientación \(\Theta_x\) de \(T_xM\), donde \(\Theta\) es la orientación de \(M\). De este modo obtenemos una correspondencia \(\Theta_A\) que asocia a cada \(x \in A\) una orientación \(\Theta_A(x)\) de \(T_xA\). Como las parametrizaciones en \(A\) son de la forma \((U, \varphi)\) donde \(\varphi : U_0 \subset \mathbb{R}^m \to U\) es una parametrización en \(M\), con \(U \subset A\), se sigue que cada \(x \in A\) pertenece a la imagen de una parametrización positiva en \(A\).

3. Sean \(M\) y \(N\) superficies \(C^k\) (\(k \geq 1\)), con \(\dim M = \dim N\).

 Sea \(f : M \to N\) un difeomorfismo local \(C^k\). Si \(N\) es orientable, entonces \(M\) también lo es.

 En efecto, sea \(\tilde{\Theta}\) una orientación de \(N\). Definamos una orientación \(\Theta\) en \(M\) como sigue: para cada \(x \in M\), denotemos por \(\Theta_x\) la
única orientación de T_xM que hace que el isomorfismo $Df(x) : (T_xM, \Theta_x) \to (T_{f(x)}N, \tilde{\Theta}_{f(x)})$ sea positivo. Es claro que Θ es una orientación en M, los detalles de las verificaciones son dejados al lector.

Observación. La recíproca de la propiedad anterior es falsa, es decir, si M es orientable y $f : M \to N$ es un difeomorfismo local, no necesariamente N es orientable, ver por ejemplo la banda de Möbius $M^2 \subset \mathbb{R}^3$.

4. Sean M^m y N^n superficies C^k, con $k \geq 1$. Si ambas superficies son orientables, entonces la superficie producto $M \times N$ es orientable.

En efecto, sean Θ y $\tilde{\Theta}$ orientaciones en M y N, respectivamente. Para cada $x \in M$ y cada $y \in N$ sean $B_x = \{v_1(x), \ldots, v_m(x)\}$ y $B_y = \{w_1(y), \ldots, w_n(y)\}$ bases de T_xM y T_yN, determinando las orientaciones Θ_x de T_xM y $\tilde{\Theta}_y$ de T_yN, respectivamente. Como $T_{(x,y)}M \times N$ es isomorfo a $T_xM \times T_yN$, y por lo tanto a $T_xM \oplus T_yN$, definimos la base

$$B_{(x,y)} = \{(v_1(x), 0), \ldots, (v_m(x), 0), (0, w_1(y)), \ldots, (0, w_n(y))\}$$

de $T_{(x,y)}M \times N$ y denotemos por $\overline{\Theta}_{(x,y)}$ la orientación de $T_{(x,y)}M \times N$ determinada por esta base, esto define una correspondencia $\overline{\Theta}$ que asocia a cada $(x, y) \in M \times N$ una orientación $\overline{\Theta}_{(x,y)}$ de $T_{(x,y)}M \times N$. Ahora si, $\varphi : U_0 \subset \mathbb{R}^m \to U \subset M$ y $\psi : V_0 \subset \mathbb{R}^n \to V \subset N$ son parametrizaciones positivas con $\varphi(x_0) = x \in U$, y $\psi(y_0) = y \in V$, entonces la parametrización $\varphi \times \psi : U_0 \times V_0 \subset \mathbb{R}^{m+n} \to U \times V \subset M \times N$ es positiva.
Proposición 8.3 Sean \(M \) y \(N \) superficies \(C^k \) \((k \geq 1)\), con \(\dim M = \dim N \). Si \(f : M \to N \) es un difeomorfismo \(C^k \), entonces \(M \) es orientable, si y sólo si, \(N \) lo es.

Demostración. Inmediata desde la Proposición 8.2.

Proposición 8.4 Sea \(M^m \) una superficie conexa. Si \(M \) es orientable, entonces admite exactamente dos orientaciones.

Demostración. Es suficiente probar que el conjunto de puntos en los cuales dos orientaciones coinciden y el conjunto de puntos donde ellas no coinciden son conjuntos abiertos en \(M \).

Sean \(\Theta \) y \(\overline{\Theta} \) orientaciones de \(M \). Dado \(x \in M \), elegimos parametrizaciones \(\varphi : U_0 \subset \mathbb{R}^m \to U \subset M \) y \(\psi : V_0 \subset \mathbb{R}^m \to V \subset M \) con \(\varphi(x_0) = \psi(y_0) = x \in U \cap V \) tales que \(\varphi \) es positiva respecto de la orientación \(\Theta \) y \(\psi \) es positiva respecto de la orientación \(\overline{\Theta} \). Si las orientaciones \(\Theta_x \) y \(\overline{\Theta}_x \) de \(T_x M \) coinciden, el isomorfismo \(D(\psi^{-1} \circ \varphi)(\varphi^{-1}(x)) : \mathbb{R}^m \to \mathbb{R}^m \) preserva la orientación de \(\mathbb{R}^m \), luego su determinante es positivo y por la continuidad de la función determinante, el difeomorfismo \(\psi^{-1} \circ \varphi \) preserva la orientación de \(\mathbb{R}^m \) para todo \(z \) en una vecindad \(W_1 \subset \varphi^{-1}(U \cap V) \) de \(x_0 = \varphi^{-1}(x) \). Sea \(W = \varphi(W_1) \subset U \cap V \), luego para cada \(y \in W \) las orientaciones \(\Theta_y \) y \(\overline{\Theta}_y \) de \(T_y M \) coinciden. Por lo tanto, el conjunto de puntos donde las dos orientaciones coinciden es abierto en \(M \).

Ahora si las orientaciones no coinciden en \(x \), es decir, \(\Theta_x \neq \overline{\Theta}_x \), entonces \(\det(D(\psi^{-1} \circ \varphi)(\varphi^{-1}(x))) \) es negativo, y por lo tanto es negativo en toda una vecindad de \(x_0 = \varphi^{-1}(x) \), esto muestra que el conjunto donde las orientaciones \(\Theta \) y \(\overline{\Theta} \) de \(M \) no coinciden es también un conjunto abierto en \(M \).

Por la conexidad de \(M \), uno de los conjuntos debe ser vacío.
8.3 Orientación y Atlas

Veamos ahora cómo se relacionan la orientabilidad y la estructura diferenciable en una superficie.

Definición 8.7 Sea $M \subset \mathbb{R}^n$ una superficie de clase C^k. Un atlas en M es una colección $\mathcal{A} = \{(U_i, \varphi_i) : i \in \Lambda\}$, donde para cada $i \in \Lambda$ se tiene que $\varphi_i : \tilde{U}_i \subset \mathbb{R}^m \to U_i \subset M$ es una parametrización de clase C^k, y $M = \bigcup_{i \in \Lambda} U_i$. Los pares (U_i, φ_i) son llamados cartas en M.

Definición 8.8 Sea M^m una superficie de clase C^k, con $k \geq 1$. Decimos que dos parametrizaciones $\varphi : U_0 \subset \mathbb{R}^m \to U \subset M$ y $\psi : V_0 \subset \mathbb{R}^m \to V \subset M$ son compatibles, si $U \cap V = \emptyset$ o si $U \cap V \neq \emptyset$ entonces $\det(J(\psi^{-1} \circ \varphi)(\varphi^{-1}(x))) > 0$ para todo $x \in U \cap V$.

Definición 8.9 Sea $M^m \subset \mathbb{R}^n$ una superficie de clase C^k, con $k \geq 1$. Decimos que un atlas \mathcal{A} de M es coherente si, cualquier par de cartas en \mathcal{A} son compatibles.

Ejemplos.

Proposición 8.5 Sea M^m una superficie orientable de clase C^k, con $k \geq 1$. Entonces el conjunto \mathcal{A} formado por todas las parametrizaciones positivas en M forman un atlas coherente.

Demostración. Inmediata.

Proposición 8.6 Sea M^m una superficie de clase C^k, con $k \geq 1$. Si existe un atlas coherente \mathcal{A} en M entonces M es orientable.
Demostración. Para cada $x \in M$ definimos una orientación Θ_x de $T_x M$ exigiendo que para cada parametrización $(U, \varphi) \in \mathcal{A}$, con $x \in U$, el isomorfismo $D\varphi(\varphi^{-1}(x)) : \mathbb{R}^m \to (T_x M, \Theta_x)$ sea positivo, es decir, preserva la orientación. La orientación Θ está bien definida, pues si $(V, \psi) \in \mathcal{A}$ es otra parametrización, con $x \in V$, entonces el cambio de coordenadas $\psi^{-1} \circ \varphi$ preserva la orientación de \mathbb{R}^m, esto es, el siguiente diagrama es conmutativo,
\[
\begin{array}{ccc}
(T_x M, \Theta_x) & \xrightarrow{D\varphi(\varphi^{-1}(x))} & \mathbb{R}^m \\
\downarrow & & \downarrow D\psi(\psi^{-1}(x)) \\
\mathbb{R}^m & \xrightarrow{D(\psi^{-1} \circ \varphi)(\varphi^{-1}(x))} & \mathbb{R}^m
\end{array}
\]
Como $D\varphi(\varphi^{-1}(x))$ es positiva y $\det D(\psi^{-1} \circ \varphi)(\varphi^{-1}(x)) > 0$, se tiene que $\psi^{-1} \circ \varphi$ preserva la orientación, se sigue que $D\psi(\psi^{-1}(x))$ preserva orientación.

Es claro que todo atlas coherente en una superficie M pertenece a una única estructura diferenciable coherente, es decir, todos los sistemas de coordenadas en tal estructura diferenciable son compatibles.

Juntando las dos proposiciones anteriores, tenemos

Teorema 8.1 Sea M^m superficie de clase C^k, con $k \geq 1$. Entonces M es orientable si, y sólo si, existe un atlas coherente en M.

Definición 8.10 Sea M^m una superficie orientada de clase C^k, con $k \geq 1$. Decimos que un atlas \mathcal{A} de M es positivo si, todas las parametrizaciones $\varphi : U_0 \subset \mathbb{R}^m \to U \subset M$ en \mathcal{A} son positivas respecto a la orientación de M.
Proposición 8.7 Sean M y N superficies orientadas de clase C^k, con $k \geq 1$, y $\dim M = \dim N = m$. Sea $f : M \to N$ un difeomorfismo C^k.

Entonces $\mathcal{P} = \{ x \in M : Df(x) : T_xM \to T_{f(x)}N \text{ es positivo} \}$ y $\mathcal{N} = \{ x \in M : Df(x) : T_xM \to T_{f(x)}N \text{ es negativo} \}$ son conjuntos abiertos en M. En particular, si M es conexa entonces o bien f es positivo o bien es negativo.

Demostración. Sea $x \in M$, existen parametrizaciones positivas $\varphi : U_0 \subset \mathbb{R}^m \to U \subset M$ y $\psi : V_0 \subset \mathbb{R}^m \to V \subset N$ con $x \in U$ y $f(U) \subset V$. El isomorfismo $Df(x) : T_xM \to T_{f(x)}N$ es positivo (negativo) si, y sólo si, el isomorfismo $D(\psi^{-1} \circ f \circ \varphi)(\varphi^{-1}(x)) : \mathbb{R}^m \to \mathbb{R}^m$ tiene determinante positivo (negativo). Ahora como la aplicación $x \mapsto \det(J(\psi^{-1} \circ f \circ \varphi)(\varphi^{-1}(x)))$ es continua, se tiene lo afirmado.

Corolario 8.2 Sea $\varphi : U_0 \subset \mathbb{R}^m \to U \subset M$ una parametrización de un abierto en una superficie orientada M. Si el dominio U_0 de φ es conexo, entonces φ es positivo o bien es negativo.

Como consecuencia inmediata de la Proposición 8.7, se tiene una prueba fácil del hecho que una superficie conexa admite sólo dos orientaciones posibles.

En efecto, si Θ y $\tilde{\Theta}$ son orientaciones de M tomando el difeomorfismo $f = I : (M, \Theta) \to (M, \tilde{\Theta})$, se tiene que o bien f es positivo, en cuyo caso $\Theta = \tilde{\Theta}$, o bien f es negativo y en este caso $\tilde{\Theta} = -\Theta$.

Corolario 8.3 Si en una superficie M^m existen parametrizaciones $\varphi : U_0 \subset \mathbb{R}^m \to U \subset M$ y $\psi : V_0 \subset \mathbb{R}^m \to V \subset M$, con U y V conexos y $U \cap V \neq \emptyset$, tales que en dos puntos de $\varphi^{-1}(U \cap V)$ el cambio de coordenadas $\psi^{-1} \circ \varphi : \varphi^{-1}(U \cap V) \to \psi^{-1}(U \cap V)$ tiene determinante jacobiano con signos opuestos. Entonces M no es orientable.
Demostración. Inmediata.

Note que en este caso, necesariamente $U \cap V$ no es conexo.

Ejemplos.

1. **Banda de Möbius.** La banda de Möbius es una superficie no orientable.

 En efecto, sea $R =]0, 5[\times]0, 1[\subset \mathbb{R}^2$. Para cada $0 \leq i < j \leq 5$ enteros, consideremos los rectángulos abiertos $R_{i,j} =]i,j[\times]0, 1[$. La banda de Möbius es el conjunto cuociente R/\sim, donde \sim es la relación de equivalencia definida como sigue: en el rectángulo $R_{1,4}$ cada punto se identifica sólo consigo mismo, y sobre los rectángulos $R_{0,1}$ y $R_{4,5}$, identificamos el punto $(x, y) \in R_{0,1}$ con el punto $(x + 4, 1 - y) \in R_{4,5}$.

 Sea $\pi : R \rightarrow R/\sim = M^2$ la proyección canónica. En $M^2 = R/\sim$ damos la siguiente topología: $A \subset R/\sim$ es abierto si, y sólo si, $\pi^{-1}(A) \subset R$ es abierto. Con esta topología se tiene que π es continua.

 Es claro que los conjuntos $U = \pi(R_{0,3})$ y $V = \pi(R_{2,5})$ son abiertos y que $\varphi = \pi/R_{0,3} : R_{0,3} \rightarrow U$ y $\psi = \pi/R_{2,5} : R_{2,5} \rightarrow V$
son homeomorfismos. Sus inversas son \(\varphi^{-1} = (\pi/R_{0,3})^{-1} : U \rightarrow R_{0,3} \subset \mathbb{R}^2 \) y \(\psi^{-1} = (\pi/R_{2,5})^{-1} : V \rightarrow R_{2,5} \subset \mathbb{R}^2 \). Tenemos entonces que \((U, \varphi)\) y \((V, \psi)\) son cartas en \(M^2 \), con \(U \cap V = \pi(R_{2,3} \cup R_{0,1}) \neq \emptyset \), y \(U \), \(V \) conexas. Claramente \(U \cup V = M^2 \). Ahora verifiquemos que el cambio de coordenadas es de clase \(C^\infty \). Tenemos \(\psi^{-1}(U \cap V) = R_{0,1} \cup R_{2,3} \) y \(\psi^{-1}(U \cap V) = R_{2,3} \cup R_{4,5} \). Sobre \(R_{2,3} \), se tiene \(\psi^{-1} \circ \varphi(x, y) = (x, y) \) es la aplicación la identidad, y sobre \(R_{0,1} \) se tiene \(\psi^{-1} \circ \varphi(x, y) = (x + 4, 1 - y) \). Por lo tanto \(A = \{(U, \varphi), (V, \psi)\} \) es un atlas \(C^\infty \) sobre la banda de Möbius. Ahora,

\[
\det J(\psi^{-1} \circ \varphi)(x, y) = \begin{cases}
1 & \text{para } (x, y) \in R_{2,3} , \\
-1 & \text{para } (x, y) \in R_{0,1} .
\end{cases}
\]

Luego la banda de Möbius es no orientable.

Otra forma. Sea \(W = \{(u, v) \in \mathbb{R}^2 : |v| < 1 \} \) y sea \(f : W \rightarrow \mathbb{R}^3 \) definida por \(f(u, v) = ((2 - v \sen(u/2)) \cos(u), (2 - v \sen(u/2)) \sen(u), v \cos(u/2)) \). La imagen de \(f \) es la banda de Möbius.

Sean \(U_0 = \{(u, v) \in W : |v| < 1, \ 0 < u < 2\pi \} \) y \(U_1 = \{(u, v) \in W : |v| < 1, \ -\pi < u < \pi \} \). Definamos las aplicaciones \(\varphi = f|U_0 : U_0 \rightarrow V_0 \) y \(\psi = f|U_1 : U_1 \rightarrow V_1 \). Se tiene que \(\varphi \) y \(\psi \), son parametrizaciones de la banda de Möbius, y que \(V_0 \cup V_1 = M \) es la banda de Möbius.

Es claro que \(U_0 \) y \(U_1 \) (y por lo tanto \(V_0 \) y \(V_1 \)) son conexas. Ahora.
Dibujo

Tenemos $\varphi^{-1}(V_0 \cap V_1) = D_1 \cup D_2$ donde $D_0 = \{(u, v) \in W : |v| < 1, 0 < u < 2\pi\}$ y $D_1 = \{(u, v) \in W : |v| < 1, \frac{3\pi}{2} < u < 2\pi\}$, y el cambio de coordenadas $\psi^{-1} \circ \varphi : \varphi^{-1}(V_0 \cap V_1) \rightarrow \psi^{-1}(V_0 \cap V_1)$ viene dado por

$$(\psi^{-1} \circ \varphi)(u, v) = \begin{cases} (u, v) & \text{en } D_0 \\ (u - 2\pi, -v) & \text{en } D_1 \end{cases}$$

así $\det J(\psi^{-1} \circ \varphi)(u, v) = 1$ en D_0 y $\det J(\psi^{-1} \circ \varphi)(u, v) = -1$ en D_1. Luego la banda de Möbius es no orientable.

2. **Botella de Klein.** Consideremos el cambio de coordenadas $\varphi_2^{-1} \circ \varphi_1$ de las parametrizaciones dada en el capítulo anterior para la botella de Klein. Recordemos que el cambio de coordenadas $\varphi_2^{-1} \circ \varphi_1(u, v) = (\bar{u}, \bar{v})$ es dado por

$$\varphi_2^{-1} \circ \varphi_1(u, v) = \begin{cases} (u - \pi/2, v) & \text{en } W_1 \\ (u + 3\pi/2, 2\pi - v) & \text{en } W_2 \end{cases}$$

Luego,

$$J(\varphi_2 \circ \varphi_1)(u, v) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

en W_1 y

$$J(\varphi_2 \circ \varphi_1)(u, v) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

en W_2. Claramente el determinante de la matriz jacobiana tiene diferente signo cada componente conexa de $\varphi_1^{-1}(\varphi_1(U_1) \cap \varphi_2(U_2))$. Por lo tanto la botella de Klein es una superficie no orientable.
3. Se deja a cargo del lector verificar que \(\mathbb{R}P^2 \) es una superficie no orientable.

Proposición 8.8 Sean \(M^m \) y \(N^n \) superficies \(C^k \), con \(k \geq 1 \). Entonces la superficie producto \(M \times N \) es orientable si, y sólo si, \(M \) y \(N \) son orientables.

Demostración. Si \(M \) y \(N \) son orientables, ya demostramos que \(M \times N \) es orientable.

Supongamos que \(M \times N \) es orientable. Sea \(\mathcal{C} \) un atlas coherente en \(M \times N \). Fijemos una parametrización \(\tilde{\psi} : V_0 \subset \mathbb{R}^n \rightarrow V \subset N \) en \(N \), con \(V \) conexo, y consideremos el siguiente atlas en \(M \), \(\mathcal{A} = \{(U, \varphi) : \varphi : U_0 \subset \mathbb{R}^m \rightarrow U \subset M \} \). Este atlas es coherente, pues si \((U_1, \varphi_1)\) y \((U_2, \varphi_2)\) pertenecen a \(\mathcal{A} \) y \(U_1 \cap U_2 \neq \emptyset \), entonces el cambio de coordenadas \((\varphi_2 \times \tilde{\psi})^{-1} \circ (\varphi_1 \times \tilde{\psi})\) es igual a \((\varphi_2^{-1} \circ \varphi_1) \times I\), por lo tanto \(\det J((\varphi_2^{-1} \circ \varphi_1) \times I)(u, v) = \det J((\varphi_2 \times \tilde{\psi})^{-1} \circ (\varphi_1 \times \tilde{\psi}))(u, v) > 0 \), por otra parte \(\det J((\varphi_2^{-1} \circ \varphi_1) \times I)(u, v) = \det J(\varphi_2^{-1} \circ \varphi_1)(u) \) para todo \((u, v) \in (\varphi_1 \times \tilde{\psi})^{-1}(U_1 \times V) = \varphi_1^{-1}(U_1) \times \tilde{\psi}^{-1}(V) \). Luego, \(\varphi_1 : W_1 \subset \mathbb{R}^m \rightarrow U_1 \subset M \) y \(\varphi_2 : W_2 \subset \mathbb{R}^m \rightarrow U_2 \subset M \) son compatibles. Por lo tanto, \(M \) es orientable.

Análogamente se muestra que \(N \) es orientable.

Ejemplos.

1. Para todo \(n \geq 1 \), la esfera unitaria \(S^n \) es orientable.

 En efecto, sea \(f : S^n \times \mathbb{R} \rightarrow \mathbb{R}^{n+1} - \{0\} \) definida por \(f(x, t) = e^t x \), es claro que \(f \) es \(C^\infty \). Además, es fácil ver que \(f^{-1} : \mathbb{R}^{n+1} - \{0\} \rightarrow S^n \times \mathbb{R} \) es dada por \(f^{-1}(y) = \left(\frac{y}{||y||}, \log(||y||)\right) \), la cual también es \(C^\infty \). Luego \(f \) es un difeomorfismo \(C^\infty \). Ahora como, \(\mathbb{R}^{n+1} - \{0\} \)
es orientable, se sigue que $S^n \times \mathbb{R}$ es orientable y por lo tanto S^n lo es.

2. Sea $\alpha : S^n \to S^n$ la aplicación antipodal, $\alpha(x) = -x$. Es claro que α es un difeomorfismo C^∞ y que $\alpha^{-1} = \alpha$, pues $\alpha \circ \alpha = \alpha^2 = 1$.

Dado $x \in S^n$, se tiene que $T_xS^n = T_{-x}S^n$ y que $D\alpha(x) : T_xS^n \to T_{-x}S^n$ es un isomorfismo. Ahora, dado $v \in T_xS^n$, $D\alpha(x)v = -v$, pues tomando el atlas $\mathcal{A} = \{(U_1^\pm, \phi_1^\pm) : i = 1, 2, \ldots, n + 1 \}$.

Supongamos que $x \in U_1^+$, entonces

$$(\varphi_1^+)^{-1} \circ \alpha \circ \varphi_1^+(x_1, \ldots, x_n) = (\varphi_1^-)^{-1} \circ \alpha(x_1, \ldots, x_{i-1},$$

$$(1 - \sum_{j=1}^{n} x_j^2)^{1/2}, x_i, \ldots, x_n) = (\varphi_1^-)^{-1}(-x_1, \ldots, -x_{i-1},$$

$$-(1 - \sum_{j=1}^{n} x_j^2)^{1/2}, -x_i, \ldots, -x_n) = (-x_1, \ldots, -x_n) = -I(x).$$

Luego, $D((\varphi_1^-)^{-1} \circ \alpha \circ \varphi_1^+)(x) = -I$. Fijemos una orientación Θ en S^n, exigiendo que una base $\{v_1, \ldots, v_n\}$ de T_xS^n es positiva si, y sólo si, $\{x, v_1, \ldots, v_n\}$ es una base positiva de \mathbb{R}^{n+1}, es decir, $\det(x, v_1, \ldots, v_n) > 0$, donde (x, v_1, \ldots, v_n) es la matriz $(n+1) \times (n+1)$ cuyas columnas son los vectores $x, v_1, \ldots, v_n \in \mathbb{R}^{n+1}$.

Es claro que $\Theta_{-x} = -\Theta_x$, es decir, aun cuando los espacios vectoriales $T_{-x}S^n$ y T_xS^n son iguales como subespacios vectoriales de \mathbb{R}^{n+1}, tienen orientaciones opuestas, y en relación a las orientaciones Θ_x de T_xS^n y Θ_{-x} de $T_{-x}S^n$, se tiene que $D\alpha(x)$ es positivo si, y sólo si, n es impar, pues en relación a estas orientaciones las parametrizaciones $\varphi_1^\pm : \mathbb{B}(0;1) \to U_i^\pm$ son positivo y $

\det J((\varphi_1^-)^{-1} \circ \alpha \circ \varphi_1^+)(x) = (-1)^n = -1$ si, y sólo si, n es impar. Además, α invierte orientación sí, y sólo si, n es par.
Sean M y N superficies C^k ($k \geq 1$), con $\dim M = \dim N$. Vimos que si N es orientable y $f : M \to N$ es un difeomorfismo local C^k, entonces M es orientable. Consideremos la situación recíproca, esto es, supongamos que f es un difeomorfismo local C^k y que M es orientable. Vimos con un ejemplo (banda de Möbius) que esto no implica que N sea orientable. Nos podemos plantear el problema siguiente ¿bajo qué condiciones N es orientable?. La hipótesis de ser f sobreyectiva es evidentemente necesaria, pues se requiere definir una orientación en cada punto de N. Un cálculo muestra que también es necesario tener que para cada $x, y \in M$, tales que $f(x) = f(y)$, el isomorfismo $(Df(y))^{-1} \circ Df(x) : T_xM \to T_yM$ sea positivo, para que así la orientación Θ_z en $z = f(x) = f(y)$, que definamos en T_zN no dependa de la elección del punto elegido en $f^{-1}(z)$.

Estas son las únicas condiciones que necesitamos para que N sea orientable, cuando M lo es. Para la recíproca, necesitamos que M sea conexa, pues en este caso o bien $f : M \to N$ es positivo o bien es negativo. En resumen tenemos el

Teorema 8.4 Sean M y N superficies C^k, con $k \geq 1$, y $\dim M = \dim N$. Supongamos que M es conexa y orientable. Sea $f : M \to N$ un difeomorfismo local sobreyectivo. Entonces N es orientable si, y sólo si, para cada $x, y \in M$, tales que $f(x) = f(y)$ el isomorfismo $(Df(y))^{-1} \circ Df(x) : T_xM \to T_yM$ es positivo.

Demostración. Inmediata.
8.4 Ejercicios

1. Sea $A \in \mathbb{M}((n+1) \times (n+1), \mathbb{R})$, tal que $AA^T = I$. Defina $	ilde{A} : \mathbb{S}^n \to \mathbb{S}^n$ por $\tilde{A}(x) = Ax$. Pruebe que \tilde{A} es un difeomorfismo de clase C^∞. Ademáes, pruebe que \tilde{A} preserva la orientación de \mathbb{S}^n si, y sólo si, $\det A = 1$.

2. Sean $M, N \subset \mathbb{R}^9$, respectivamente, los conjuntos de las matrices de rango 1 y 2. Muestre que M y N son superficies C^∞, ambas orientables.

3. Sean M y N superficies orientables y sea $f : M \to N$ una aplicación de clase C^1. Si $y \in N$ un valor regular de f pruebe que $f^{-1}(y)$ es una superficie orientable.

 Nota: recuerde que $y \in N$ es un valor regular de f si para cada $x \in f^{-1}(y)$ se tiene que la derivada $Df(x) : T_xM \to T_yN$ es sobreyectiva cuando $f^{-1}(\{y\}) \neq \emptyset$.

4. El fibrado normal TM^\perp de una superficie $M^m \subset \mathbb{R}^n$ de clase C^k ($k \geq 2$), es definido como el conjunto $TM^\perp = \{(p, n) \in \mathbb{R}^m \times \mathbb{R}^{n-m} : p \in M$ y $n \in T_pM^\perp \}$, donde $T_pM^\perp = \{w \in \mathbb{R}^n : \langle w, v \rangle = 0$ para cada $v \in T_pM\}$ es el subespacio de \mathbb{R}^n ortogonal a T_pM. Pruebe TM^\perp es una superficie orientable de clase C^{k-1}.

5. Sea $M \subset \mathbb{R}^m$ una superficie de clase C^k, con $k \geq 1$. Pruebe que el fibrado normal unitario $TM_1 = \{(p, v) \in \mathbb{R}^{2m} : p \in M$ y $v \in T_pM, ||v|| = 1\}$ es una superficie orientable de clase C^{k-1}.

6. Sean $M, N \subset \mathbb{R}^n$ superficies C^k, con $k \geq 1$, con $M \cap N \neq \emptyset$ y tales que en cada punto $x \in M \cap N$ se tiene que $T_xM + T_xN = \mathbb{R}^n$. Suponga que M y N son orientables, y que $M \cap N$ es una
superficie C^k ¿es $M \cap N$ orientable? Pruebe que $M \cap N$ es una superficie C^k.

7. Construya ejemplos de superficies orientables y ejemplos de superficies no orientables.

8. Sea $H = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \right\}$. Defina la relación de equivalencia \sim sobre H como sigue: $(x, y, z), (u, v, w) \in H$, entonces $(x, y, z) \sim (u, v, w)$ si, y sólo si, $x = \pm u, y = \pm v, z = \pm w$. Sea $M = \{[(x, y, z)] : (x, y, z) \in H\}$ el espacio cuociente, donde $[(x, y, z)]$ indica la clase de equivalencia del punto (x, y, z).

Pruebe que M es una superficie 2-dimensional no orientable.

9. Sean M_1 y M_2 superficies C^k, con $k \geq 1$, y $\varphi : M_1 \rightarrow M_2$ un difeomorfismo local C^k. Si M_2 es orientable, pruebe que M_1 es orientable. Si M_1 es orientable ¿es M_2 orientable?

10. Pruebe que toda superficie 1-dimensional conexa es orientable.

11. Demuestre que las aplicaciones

$$\begin{cases}
 x = a \text{sen}^2(u) \\
 y = a \text{sen}(u) \cos(u), \quad 0 \leq u \leq 2\pi \\
 z = a \cos(u)
\end{cases}$$

definen una superficie y encuentre su espacio normal

12. Sea $S \subset \mathbb{R}^3$ una superficie C^∞. Pruebe que S es orientable si, y sólo si, existe una aplicación diferenciable $N : S \rightarrow \mathbb{R}^3$, tal que para cada $p \in S$ el vector $N(p)$ es ortogonal a T_pS y $||N(p)|| = 1$.

13. Probar que la banda de Möbius no es difeomorfa al cilindro $S^1 \times \mathbb{R}$.
14. Sea $U \subset \mathbb{R}^n$ un conjunto abierto. Pruebe que el gráfico de cualquier aplicación C^k ($k \geq 1$), $f : U \rightarrow \mathbb{R}^m$ es una super- ficie orientable.

15. Sea $U \subset \mathbb{R}^2$ un conjunto abierto. Si $f : U \rightarrow \mathbb{R}$ una aplicación de clase C^k ($k \geq 1$), y sea $M = \text{graf}(f) = \{(x, y, z) \in \mathbb{R}^3 : z = f(x, y), (x, y) \in U\}$. Encuentre una base para $T_{(x, y, z)}M_{\perp}$.

16. Sea M^m una superficie de clase C^r ($r \geq 1$), con borde. Suponga que M es no orientable. ¿Es el borde M no orientable? Si su respuesta es afirmativa, demuéstrelo, si es negativa, justifique con un ejemplo.

17. Sea $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ una aplicación de clase C^k ($k \geq 1$) y sea $r \in \mathbb{R}$ un valor regular de f, con $f^{-1}(r) \neq \emptyset$. Encuentre $T_{(x, y, z)}f^{-1}(r)_{\perp}$ para cada $(x, y, z) \in f^{-1}(r)$. Demuestre que la superficie $f^{-1}(r)$ es orientable.

18. Pruebe que la banda de Möbius $M \subset \mathbb{R}^3$ (con o sin borde) no puede ser imagen inversa de un valor regular para ninguna función C^r ($r \geq 1$), $f : \mathbb{R}^3 \rightarrow \mathbb{R}$.

19. Sea $C = S^1 \times \mathbb{R}$ el cilindro 2-dimensionado contenido en \mathbb{R}^3. Defina $f : C \rightarrow C$ por $f(x, y, z) = (-x, y, z + 1)$. Es claro que f es un difeomorfismo ¿f preserva o invierte orientación?

20. Incrustación de la botella de Klein en \mathbb{R}^4. Sea $G : \mathbb{R}^2 \rightarrow \mathbb{R}^4$, definida por

$$G(x, y) = ((r \cos(y) + a) \cos(x), (r \cos(y) + a) \sin(x),$$

$$r \sin(y) \cos(x/2), r \sin(y) \sin(x/2)) .$$
Pruebe que G induce una incrustación de la botella de Klein en \mathbb{R}^4.

21. Considere la esfera 2-dimensional, $S^2 \subset \mathbb{R}^3$. Dotemos a S^2 con dos orientaciones distintas, Θ y $\tilde{\Theta}$, en la primera una base $\{v_1, v_2\}$ de $T_{(0,0,1)}S^2$ es positiva si $\{x, v_1, v_2\}$ es una base positiva de \mathbb{R}^3; en la segunda una base $\{w_1, w_2\}$ de $T_{(0,0,1)}S^2$ es positiva si $\{-x, w_1, w_2\}$ es una base positiva de \mathbb{R}^3. Sea $\alpha : (S^2, \Theta) \rightarrow (S^2, \tilde{\Theta})$ la aplicación antipodal. Usando las parametrizaciones polo-norte y polo-sur, verifique si α preserva o invierte orientación.

22. Encuentre una parametrización para la curva obtenida intersectando el plano $2x + z = 1$ con la esfera $x^2 + y^2 + z^2 = 3$; orientada en sentido antihorario cuando es vista desde arriba.
Capítulo 9

Superficies con Borde

Es este capítulo generalizamos el concepto de superficie de modo a incluir aquellas que tienen borde, como por ejemplo la bola unitaria en espacio euclideanos, cuyo borde es la esfera unitaria correspondiente.

Consideramos como espacio modelo el semi-espacio H^m en \mathbb{R}^m, definido por $H^m = \{ (x_1, \ldots, x_m) \in \mathbb{R}^m : x_m \geq 0 \}$. El borde de H^m es $\partial H^m = \{ (x_1, \ldots, x_m) \in H^m : x_m = 0 \}$, es claro que $\partial H^m = \mathbb{R}^{m-1} \times \{0\}$.

Consideramos a H^m con la topología inducida por la de \mathbb{R}^n, es decir, $A \subset H^m$ es un conjunto abierto si, existe un conjunto abierto $U \subset \mathbb{R}^m$ tal que $A = U \cap H^m$.

Desde la definición vemos que existen dos tipos de conjuntos abiertos en H^m, aquellos para los cuales $A \subset H^m - \partial H^m$, y en este caso, estos conjuntos son abiertos en \mathbb{R}^m, y aquellos que intersectan a ∂H^m. Ver la figura

$\partial H^m = \mathbb{R}^{m-1} \times \{0\}$

315
Definición 9.1 Sea $X \subset \mathbb{R}^m$ con la topología inducida. Decimos que una aplicación $f : X \rightarrow \mathbb{R}^n$ es diferenciable (de clase C^k) si existe una aplicación diferenciable (de clase C^k) $F : U \rightarrow \mathbb{R}^n$ definida en un conjunto abierto $U \subset \mathbb{R}^m$, con $X \subset U$, tal que $F/X = f$.

Observaciones

1. Si X es un conjunto abierto de \mathbb{R}^m la actual definición de diferenciabilidad y la anterior del Capítulo 7 coinciden.

2. La diferenciabilidad de f no depende del abierto U que contiene a X ni de la extensión F de f.

Notemos que las extensiones de $f : X \rightarrow \mathbb{R}^m$ a vecindades de X pueden tener diferentes derivadas, por ejemplo, consideremos $X = \{0\}$ y sea $f : X \rightarrow \mathbb{R}$ dada por $f(0) = 0$. Tomemos las extensiones $F_1(x) = x$ y $F_2(x) = x^3$ de f, ellas tienen diferentes derivadas en $x = 0$. De lo anterior vemos que, en general, no podemos definir la derivada de f como siendo la derivada de cualquiera de sus extensiones. Para el caso de $f : \mathbb{H}^m \rightarrow \mathbb{R}^n$ este problema no existe.

Lema 9.1 Existe una base de \mathbb{R}^m formada sólo por vectores de \mathbb{H}^m.

Demostración. Dado $v \in \mathbb{R}^m$ se tiene que o bien $v \in \mathbb{H}^m$ o bien $-v \in \mathbb{H}^m$. Por lo tanto dada una base de \mathbb{R}^m, cambiando el signo a cada vector que no está en \mathbb{H}^m, obtenemos una nueva base formada sólo por vectores de \mathbb{H}^m.

Proposición 9.1 Si $A \subset \mathbb{H}^m$ es un conjunto abierto y $f : A \rightarrow \mathbb{R}^n$ es diferenciable en $x \in A$ entonces la derivada de f en x está bien definida. (Como antes denotamos la derivada por $Df(x)$.)
Demostración. Si $A \subset \text{int}(\mathbb{H}^m) = \mathbb{H}^m - \partial \mathbb{H}^m$ el resultado es inmediato.

Ahora, si $x \in A \cap \partial \mathbb{H} \neq \emptyset$ entonces existe una base $\{v_1, \ldots, v_m\}$ de \mathbb{R}^m formada sólo por vectores de \mathbb{H}^m. Luego, para cada $x \in \partial \mathbb{H}^m$ y para $t \geq 0$ los vectores $x + tv_1, \ldots, x + tv_m$ pertenecen a \mathbb{H}^m. Ahora, como $x \in A \cap \mathbb{H}^m$ entonces para todo $t > 0$ suficientemente pequeño se tiene que $x + tv_i \in A$, para $i = 1, \ldots, m$ pues A es abierto en \mathbb{H}^m.

Ahora sea $U \subset \mathbb{R}^m$ un abierto tal que $A = U \cap \mathbb{H}^m$ y sea $F : U \to \mathbb{R}^n$ una extensión diferenciable de f. Tenemos que para todo $v \in \mathbb{R}^m$ el límite

$$DF(x)v = \lim_{t \to 0} \frac{F(x + tv) - F(x)}{t}$$

existe. En particular, existe el límite

$$DF(x)v_i = \lim_{t \to 0^+} \frac{F(x + tv_i) - F(x)}{t} = \lim_{t \to 0^+} \frac{f(x + tv_i) - f(x)}{t},$$

esto es, los valores de la transformación lineal $DF(x) : \mathbb{R}^m \to \mathbb{R}^n$ en los vectores de la base $\{v_1, \ldots, v_m\}$ de \mathbb{H}^m están bien definidos a partir de f, en consecuencia la derivada, $Df(x)$, de f en x no depende de la extensión F elegida para calcularla.

Teorema 9.1 (Regla de la Cadena). Sean $A \subset \mathbb{H}^m$ y $B \subset \mathbb{H}^n$ conjuntos abiertos, y sean $f : A \to \mathbb{R}^n$ y $g : B \subset \mathbb{H}^n \to \mathbb{R}^\ell$ aplicaciones diferenciables, con $f(A) \subset B$. Entonces la aplicación $g \circ f : A \to \mathbb{R}^\ell$ es diferenciable. Además, $D(g \circ f)(x) = Dg(f(x)) \circ Df(x)$.

Demostración. Inmediata a partir del teorema anterior y Teorema de la Regla de la Cadena en espacios euclideanos.

Sea $A \subset \mathbb{H}^m$ un conjunto abierto. El borde de A es el conjunto $\partial A = A \cap \partial \mathbb{H}^m$. Tenemos que ∂A es una superficie de codimensión uno.
de \(\mathbb{R}^m \), pues por definición existe un conjunto abierto \(U \subset \mathbb{R}^m \) tal que \(A = U \cap \mathbb{H}^m \). Luego, \(U \cap \partial \mathbb{H}^m = U \cap (\mathbb{H}^m \cap \partial \mathbb{H}^m) = (U \cap \mathbb{H}^m) \cap \partial \mathbb{H}^m = A \cap \partial \mathbb{H}^m = \partial A \).

Definición 9.2 Un difeomorfismo de clase \(C^k \) entre conjuntos abiertos \(A \subset \mathbb{H}^m \) y \(B \subset \mathbb{H}^n \) es una bijección de clase \(C^k \), \(f : A \rightarrow B \) cuya inversa también es de clase \(C^k \).

De las igualdades \(f^{-1} \circ f = \text{Id}_A \) y \(f \circ f^{-1} = \text{Id}_B \) se sigue, usando la Regla de la Cadena, que para \(y = f(x) \) con \(x \in A \) las derivadas \(Df(x) : \mathbb{R}^m \rightarrow \mathbb{R}^n \) y \(Df^{-1}(y) : \mathbb{R}^n \rightarrow \mathbb{R}^m \) son isomorfismos, uno inverso del otro; en particular \(m = n \).

Teorema 9.2 Sean \(A \subset \mathbb{H}^m \) y \(B \subset \mathbb{H}^m \) conjuntos abiertos. Si \(f : A \rightarrow B \) es un difeomorfismo de clase \(C^1 \) entonces \(f(\partial A) = \partial B \). En particular, \(f/\partial A \) es un difeomorfismo entre las superficies de codimensión uno \(\partial A \) y \(\partial B \).

Demostración. Si \(x \in \text{int}(A) \) entonces existe un conjunto abierto \(U \subset \mathbb{R}^m \), con \(x \in U \subset A \). Tenemos, en este caso, que \(f/U \) es un difeomorfismo de clase \(C^1 \), y por el Teorema de la Función Inversa su imagen \(f(U) \) es un conjunto abierto de \(\mathbb{R}^m \). Como \(f(A) \subset B \) se sigue que \(f(x) \in f(U) \subset f(A) \subset B \) es abierto, luego cada \(f(x) \) está en un conjunto abierto contenido en \(B \), es decir, \(B \) es abierto, de donde \(f(\text{int}(A)) \subset \text{int}(B) \), y por lo tanto \(f^{-1}(\partial B) \subset \partial A \), luego \(\partial B \subset f(\partial A) \). Análogamente se prueba que \(f(\partial A) \subset \partial B \). Por lo tanto \(f(\partial A) = \partial B \).

Observación. El resultado anterior también es válido para homeomorfismo, pero son necesarios otros conceptos para probarlo.

Ahora extendemos el concepto de parametrización a subconjuntos de espacios euclideanos que serán nuestras superficies con borde.
Definición 9.3 Sea $U \subset \mathbb{R}^n$. Una parametrización de clase C^k y dimensión m de U es un homeomorfismo de clase C^k, $\varphi : U_0 \subset \mathbb{H}^m \rightarrow U$ definido en un conjunto abierto U_0 de \mathbb{H}^m, tal que para cada $x \in U_0$ la derivada $D\varphi(x) : \mathbb{R}^m \rightarrow \mathbb{R}^n$ es inyectiva.

Definición 9.4 Un subconjunto $M^m \subset \mathbb{R}^n$ es una superficie con borde, de dimensión m y clase C^k, con $k \geq 1$, si cada punto $x \in M$ pertenece a un abierto $U \subset M$ que es imagen de una parametrización de clase C^k, $\varphi : U_0 \subset \mathbb{H}^m \rightarrow U$, donde U_0 es un conjunto abierto en \mathbb{H}^m.

Observaciones.

1. En la definición de superficie con con borde podemos usar cualquiera semi–espacio $\mathbb{H}^m_j \subset \mathbb{R}^m$ definidos por $\mathbb{H}^m_j = \{(x_1, \ldots, x_m) \in \mathbb{R}^m : x_j \geq 0\}$ o bien los semi–espacio $\tilde{\mathbb{H}}^m_j = \{(x_1, \ldots, x_m) \in \mathbb{R}^m : x_j \leq 0\}$. Más general, podemos usar cualquier semi–espacio determinado por un subespacio o un subespacio afín $(m-1)$–dimensional de \mathbb{R}^m.

2. Si \mathbb{H}^m_j y \mathbb{H}^m_i son semi–espacios de \mathbb{R}^m entonces existe un difeomorfismo de clase C^∞ que aplica uno en el otro. Por ejemplo, si suponemos que $i < j$ entonces $H_{i,j} : \mathbb{H}^m_i \rightarrow \mathbb{H}^m_j$ definido por $H_{i,j}(x_1, \ldots, x_i, \ldots, x_j, \ldots, x_m) = (x_1, \ldots, x_j, \ldots, x_i, \ldots, x_m)$, satisface lo pedido.

9.1 Cambios de Coordenadas

Sea $M^m \subset \mathbb{R}^n$ una superficie con borde, de clase C^k y dimensión m. Sean $\varphi : U_0 \subset \mathbb{H}^m \rightarrow U$ y $\psi : V_0 \subset \mathbb{H}^m \rightarrow V$ parametrizaciones de clase C^k de conjuntos abiertos U y V de M, respectivamente,
con $U \cap V \neq \emptyset$. Afirmamos que el cambio de coordenada $\psi^{-1} \circ \varphi : \varphi^{-1}(U \cap V) \subset \mathbb{H}^m \to \psi^{-1}(U \cap V) \subset \mathbb{H}^m$ es un difeomorfismo de clase C^k.

En efecto, basta demostrar que $\psi^{-1} \circ \varphi$ es de clase C^k, pues como $\varphi^{-1} \circ \psi = (\psi^{-1} \circ \varphi)^{-1}$ este también será de clase C^k.

Sea $u \in \varphi^{-1}(U \cap V)$, y sean $x = \varphi(u)$, $v = \psi^{-1}(\varphi(u))$. Por definición de parametrización, tenemos que ψ se extiende a una aplicación de clase C^k, $\Psi : W \to \mathbb{R}^n$, donde $W \subset \mathbb{R}^m$ es un conjunto abierto con $v \in W$. Como $D\Psi(v)$ es inyectiva, del Teorema de la Forma Local de las Inmersiones, tenemos que (achicando W, si es necesario) Ψ es un homeomorfismo desde W sobre su imagen, y el homeomorfismo inverso es la restricción a $\Psi(W)$ de una aplicación C^k, Λ, definida en un conjunto abierto de \mathbb{R}^n. Luego, tomando $A = \varphi^{-1}(\Psi(W))$ tenemos que A es un conjunto abierto en \mathbb{H}^m y $u \in A$. Además, $\frac{(\psi^{-1} \circ \varphi)/A}{(\Lambda \circ \varphi)/A}$ la cual es de clase C^k. Luego $\psi^{-1} \circ \varphi \in C^k$ en una vecindad de cada punto $u \in \varphi^{-1}(U \cap V)$, de donde $\psi^{-1} \circ \varphi$ es de clase C^k.

El borde de M es el conjunto, ∂M, formado por los puntos $x \in M$ tales que para toda parametrización de clase C^k, $\varphi : U_0 \subset \mathbb{H}^m \to U \subset M$ de un abierto $U \subset M$, con $x = \varphi(u)$ se tiene que $u \in \partial U_0$.

Por el teorema anterior, y el hecho que cada parametrización es un difeomorfismo, se sigue que dado $x \in M$ y una parametrización de clase C^k, $\varphi : U_0 \subset \mathbb{H}^m \to U \subset M$ de un abierto U de M, con $x = \varphi(u)$, donde $u \in \partial U_0$ se tiene que $x \in \partial M$, es decir, si $x = \varphi(u) \in U$ para alguna parametrización de clase C^k, $\varphi : U_0 \to U$, definida en un abierto $U_0 \subset \mathbb{R}^m$ entonces para cualquier otra parametrización de clase C^k, $\psi : V_0 \subset \mathbb{H}^m \to V \subset M$, donde V_0 es un conjunto abierto en \mathbb{H}^m, si $x = \psi(v)$ entonces necesariamente $v \in \partial(V_0)$.
Teorema 9.3 Sea $M^m \subset \mathbb{R}^n$ una superficie de dimensión m y clase C^k $(k \geq 1)$, con borde. Entonces ∂M es una superficie de clase C^k y dimensión $m - 1$.

Demotración. Las parametrizaciones de ∂M son las restricciones a $\partial U_0 = U_0 \cap \partial \mathbb{H}^m$ de las parametrizaciones de clase C^k, $\varphi: U_0 \subset \mathbb{H}^m \to U \subset M$, tales que el abierto $U \subset M$ satisface $U \cap \partial M \neq \emptyset$.

Recordemos que si $f: M^m \to N^n$ es una aplicación de clase C^ℓ $(\ell \geq 1)$, entonces $r \in N$ es un valor regular de f si, $f^{-1}(r) = \emptyset$ o en caso contrario, para cada $x \in f^{-1}(r)$ la derivada $Df(x): T_x M \to T_{f(x)} N$ es sobreyectiva. (En particular, $m \geq n$.)

Teorema 9.4 Sea M^m una superficie C^k, y sea $f: M \to \mathbb{R}$ una aplicación de clase C^k. Si $r \in \mathbb{R}$ es un valor regular de f entonces el conjunto $N = \{ x \in M : f(x) \geq r \}$ es una superficie de clase C^k y dimensión m, cuyo borde es $\partial N = f^{-1}(r)$.

Demostración. Es claro que el conjunto $A = \{ x \in M : f(x) > r \}$ es un conjunto abierto de M, luego es una superficie C^k y dimensión m. Ahora debemos parametrizar las vecindades de los puntos $x \in N$ para los cuales $f(x) = r$. Dado $x \in N$ tal que $f(x) = r$, sea $\varphi: U_0 \subset \mathbb{R}^m \to U \subset M$ una parametrización de clase C^k de $U \subset M$, con $x = \varphi(u) \in U$ y $u = (u_1, \ldots, u_m) \in U_0$. Como r es valor regular de f y por lo tanto de $f \circ \varphi: U_0 \to \mathbb{R}$, sin perdida de generalidad, podemos suponer que $\frac{\partial (f \circ \varphi)}{\partial u_m}(u) > 0$. Del Teorema de la Forma Local de las Submisiones, existe un conjunto abierto $W \subset \mathbb{R}^{m-1}$, con $(u_1, \ldots, u_{m-1}) \in W$, existe un intervalo abierto $I =]r - \varepsilon, r + \varepsilon[,$ y existe un difeomorfismo de clase C^k, $\xi: W \times I \to Z$ sobre un abierto $Z \subset U_0$, tal que $(f \circ \varphi) \circ \xi: W \times I \to \mathbb{R}$ satisface $(f \circ \varphi) \circ \xi(u, t) = t$. Consideremos el semi-espacio
\(\mathbb{H} = \{(v_1, \ldots , v_m) : v_m \geq r\} \). Sean \(V_0 = (W \times I) \cap \mathbb{H}, \psi = (\varphi \circ \xi)/V_0 \) y \(V = \varphi \circ \xi(V_0) \). Entonces \(\psi : V_0 \to V \) es una parametrización del abierto \(V \), con \(x \in V \).

Nota. De modo análogo se prueba que \(N = \{x \in M : f(x) \leq r\} \) es una superficie con borde.

Ejemplo La bola cerrada de centro en \(u \in \mathbb{R}^m \) y radio \(r > 0 \), \(B[u, r] \subset \mathbb{R}^m \), es una superficie \(m \)-dimensional \(C^\infty \) con borde, y \(\partial B[u, r] = S^{m-1}(u, r) \), esfera \((m-1)\)-dimensional de centro en \(u \) y radio \(r \).

En efecto, consideremos la aplicación \(f : \mathbb{R}^m \to \mathbb{R} \) dada por \(f(x) = \|x - u\|^2 - r \), tenemos que \(f \) es de clase \(C^\infty \), y el único valor no regular de \(f \) es \(r = 0 \), luego para cada \(r > 0 \) se tiene que \(B[u, r] = f^{-1}(\{x \in \mathbb{R}^m : f(x) \leq r^2\}) \) es una superficie \(m \)-dimensional de clase \(C^\infty \) con borde.

Sea \(M \subset \mathbb{R}^n \) una superficie \(m \)-dimensional de clase \(C^k \), con borde. Para cada \(x \in M \) definimos el espacio tangente a \(M \) en \(x \), \(T_x M \), como fue hecho en el Capítulo 8, es decir, elegimos una parametrización de clase \(C^k \), \(\varphi : U_0 \subset \mathbb{H}^m \to U \subset M \) de en un conjunto abierto \(U \subset M \), con \(x = \varphi(u) \in U \), y definimos \(T_x M = D\varphi(u)\mathbb{R}^m \). Es claro desde la definición de \(T_x M \) que este es un subespacio vectorial de dimensión \(m \) de \(\mathbb{R}^n \). Ahora, si \(x \in \partial M \) entonces el dominio \(U_0 \) de la parametrización \(\varphi \) es un abierto en \(\mathbb{H}^m \) con \(u = \varphi^{-1}(x) \in \partial \mathbb{H}^m \). La imagen \(D\varphi(u)\partial \mathbb{H} = T_x(\partial M) \) es un subespacio vectorial de codimensión uno de \(T_x M \) que es el espacio tangente a la superficie sin borde \(\partial M \) en el punto \(x \).
Afirmamos que la definición de T_xM no depende de la parametrización

$\varphi : U_0 \subset \mathbb{H}^m \rightarrow U \subset M$, con $x = \varphi(u) \in U$, usada para definirlo. La prueba es completamente análoga a aquella dada en el Capítulo 8, pues si $\psi : V_0 \subset \mathbb{H}^m \rightarrow V \subset M$ es otra parametrización de clase C^k, con $x = \psi(v)$, entonces $\xi = \psi^{-1} \circ \varphi : \varphi^{-1}(U \cap V) \rightarrow \psi^{-1}(U \cap V)$ es un difeomorfismo entre conjuntos abiertos de \mathbb{H}^m y $\varphi = \psi \circ \xi$. Luego $D\varphi(u) = D\psi(v) \circ D\xi(u)$, y como $D\xi(u) : \mathbb{R}^m \rightarrow \mathbb{R}^m$ es un isomorfismo se tiene que $D\varphi(u)\mathbb{R}^m = D\psi(v)\mathbb{R}^m$. Lo que completa la prueba de la afirmación.

Si $M^m \subset \mathbb{R}^n$ es una superficie de clase C^k, con borde, y si $\varphi : U_0 \subset \mathbb{H}^m \rightarrow U \subset M$ es una parametrización de una vecindad de un punto $x \in M$. Vimos que si $x = \varphi(u) \in \partial M$ entonces $D\varphi(u)(\partial \mathbb{H}^m) = T_x\partial M$ es un subespacio $(m - 1)$-dimensional de T_xM. Esto nos permitirá definir el concepto de vector que apunta hacia afuera en una superficie con borde. Primero definiremos este concepto para semi-espacios, para luego traspasarlo a superficies con borde.

Definición 9.5 Decimos que un vector $w \in \mathbb{R}^m$ apunta hacia afuera del semi-espacio $\mathbb{H}^m_i \subset \mathbb{R}^m$ si, $w \notin \mathbb{H}^m_i$, es decir, si $w = (w_1, \ldots, w_m)$ entonces $w_j < 0$.

Teorema 9.5 Sea $f : A \rightarrow B$ un difeomorfismo entre conjuntos abiertos $A \subset \mathbb{H}^m_i$ y $B \subset \mathbb{H}^m_j$. Si $w \in \mathbb{R}^m$ apunta para afuera de \mathbb{H}^m_i entonces para cada $x \in \partial A$ el vector $Df(x)w$ apunta para afuera de \mathbb{H}^m_j.

Demostración. Como $f/\partial A$ es un difeomorfismo entre ∂A y ∂B, y la derivada $Df(x) : \mathbb{R}^m \rightarrow \mathbb{R}^m$ aplica $\partial \mathbb{H}^m_i$ isomórficamente en $\partial \mathbb{H}^m_j$, dado $v \in \mathbb{R}^m$ se tiene que la j-ésima coordenada de $Df(x)v$ es 0.
si, y sólo si, la i-ésima coordenada de v es 0. Si $t > 0$, entonces $x + tw \in \mathbb{H}^m$, luego para todo t positivo y suficientemente pequeño, se tiene $x + tw \in A - \partial A$, de donde $f(x + tw) \in B - \partial B$ y $\pi_j f(x + tw) > 0$.

Para tales valores de $t > 0$ se tiene que $\pi_j f(x + tw) \in B - \partial B$ y $\pi_j f(x + tw) > 0$.

\[\pi_j f(x + tw) = \pi_j f(x) = 0. \]

Definición 9.6 Sea $M^m \subset \mathbb{R}^n$ una superficie de dimensión m y clase C^k ($k \geq 1$) con borde, y sea $x \in \partial M$. Decimos que un vector $w \in T_x M$ apunta para fuera de M si existe una parametrización de clase C^k, $\varphi : U_0 \subset \mathbb{H}^m \rightarrow U \subset M$, tal que $x = \varphi(u) \in U$ y $w = D\varphi(u)w_0$, donde $w_0 \in \mathbb{R}^m$ apunta para afuera de \mathbb{H}^m.

Observemos que este concepto no depende de la parametrización usada, esto es, si $\psi : V_0 \subset \mathbb{H}^m \rightarrow V \subset M$ es otra parametrización, con $x = \psi(v) \in V$ y $D\psi(v)w_1 = w$ entonces $w_1 \in \mathbb{R}^m$ es un vector que apunta hacia afuera del semi–espacio \mathbb{H}^m. En efecto, el cambio de coordenadas $\xi = \psi^{-1} \circ \varphi$ satisface $D\xi(u)w_0 = w_1$, de esto tenemos $D\psi(v)w_1 = D\psi(v) \circ D\xi(u)w_0 = D\varphi(u)w_0$. Lo que concluye la prueba.

Para cada $x \in \partial M$, los vectores tangentes a ∂M junto con los vectores que apuntan para afuera de M forman un semi–espacio de $T_x M$. Entre los vectores que apuntan para afuera de M, existe un único vector unitario y normal a $T_x \partial M$, el cual denotamos por $n(x)$. Esto define una aplicación $n : \partial M \rightarrow \mathbb{R}^n$ que asocia a cada $x \in \partial M$ el vector unitario $n(x)$ normal a $T_x \partial M$, llamado campo de vectores normal a ∂M.

Si M es de clase C^k entonces la aplicación n es de clase C^{k-1}, pues si, $\varphi : U_0 \subset \mathbb{R}^m \rightarrow U \subset M$ es una parametrización, tomando una base positiva $\{v_1, \ldots, v_m\}$ de \mathbb{R}^m donde v_m apunta hacia afuera de \mathbb{H}^m y
\{v_1,\ldots,v_{m-1}\} \subset \partial \mathbb{H}^m$ se tiene que

$$n(x) = \frac{D\varphi(u)v_1 \times \cdots \times D\varphi(u)v_{m-1}}{||D\varphi(u)v_1 \times \cdots \times D\varphi(u)v_{m-1}||},$$

para todo $x = \varphi(u) \in \partial U = \partial M \cap U$.

Definición 9.7 Decimos que una superficie de clase C^k, con borde, $M^m \subset \mathbb{R}^n$ es orientable si existe un atlas coherente de clase C^k en M.

Tenemos ahora la siguiente proposición.

Proposición 9.2 Si $M^m \subset \mathbb{R}^n$ es una superficie de clase C^k, con borde orientable. Entonces ∂M es una superficie de clase C^k, sin borde y orientable.

Demostración. Supongamos que M es orientable y que $\dim M = m \geq 1$. Si $m = 1$ entonces ∂M es una superficie de dimensión 0, por lo tanto trivialmente orientable. Asumamos entonces que $m > 1$. Sea A el conjunto de las parametrizaciones $\varphi : U_0 \subset \mathbb{H}^m_1 \rightarrow U \subset M$ de clase C^k, tales que:

1. U_0 es un conjunto abierto y conexo, contenido en el semi–espacio $\mathbb{H}^m_1 = \{(x_1,\ldots,x_m) \in \mathbb{R}^m : x_1 \geq 0\}$,

2. φ es positiva respecto de la orientación de M.

El conjunto de las parametrizaciones de M que satisfacen 1) y 2) anteriores constituyen un atlas para M, pues si $\psi : V_0 \subset \mathbb{H}^m_1 \rightarrow V \subset M$ es una parametrización que satisface 1) y si ψ no es positiva, componiendo con la transformación lineal $T(x_1,\ldots,x_m) = (-x_1,x_2,\ldots,x_m)$ y tomando $V_1 = T^{-1}(V_0)$, tenemos que $\varphi = \psi \circ T : V_1 \rightarrow U$ es una parametrización que satisface 1) y 2) anteriores. Identificamos \mathbb{R}^{m-1}...
con ∂H^m_1. Sea A_1 el conjunto de las restricciones $\varphi_0 = \varphi/\partial U_0$, de las parametrizaciones $\varphi \in A$ tales que $\partial U_0 = U_0 \cap H^m_1 \neq \emptyset$. Es claro que A_1 es un atlas de clase C^k para ∂M. Afirmamos que A_1 es un atlas coherente para ∂M. Para verlo, consideremos parametrizaciones $\varphi_0: \partial U_0 \to \partial U$ y $\psi_0: \partial V_0 \to \partial V$ en A_1, con $\partial U \cap \partial V \neq \emptyset$. Entonces el cambio de coordenadas $\xi_0 = \psi_0^{-1} \circ \varphi_0$ es la restricción del difeomorfismo $\xi = \psi^{-1} \circ \varphi$ al borde de su dominio. Sea $u \in \varphi^{-1}(\partial U \cap \partial V)$. Como A es un atlas coherente para M se tiene que $\det(D\xi(u)) > 0$, y como $\xi: \varphi^{-1}(U \cap V) \to \psi^{-1}(U \cap V)$ es un difeomorfismo entre abiertos de H^m_1, se sigue que $D\xi(u)(\partial H^m_1) = \partial H^m_1$, de donde $D\xi(u)e_i = (0, a_{i2}, \ldots, a_{im})$, para $i = 2, \ldots, m - 1$. Finalmente como $-e_1$ apunta para afuera de H^m_1 tenemos que $D\xi(u)(-e_1) = (a_{11}, a_{12}, \ldots, a_{m1})$ apunta para afuera de H^m_1, es decir, $a_{11} > 0$. Luego la matriz de $D\xi(u)$ tiene la forma

$$
\begin{pmatrix}
0 & 0 & \cdots & 0 \\
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & a_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mm}
\end{pmatrix}
$$

Sea A_0 la matriz

$$
\begin{pmatrix}
0 & \cdots & a_{2m} \\
\vdots & \ddots & \vdots \\
a_{m2} & \cdots & a_{mm}
\end{pmatrix}
$$

Es claro que A_0 es la matriz de la derivada de ξ_0. Ahora tenemos que $\det(D\xi(u)) = a_{11} \det(A_0)$ y como $a_{11} > 0$ se sigue que $\det(A_0) > 0$, y en consecuencia A_1 es un atlas coherente para ∂M.

La orientación de ∂M determinada por la orientación de M es llamada orientación inducida.
Relativa a la orientación inducida por \(M \) en \(\partial M \), se tiene que una base \(\{w_1, \ldots, w_{m-1}\} \) de \(T_x \partial M \) es positiva si, y sólo si, para cualquier \(w \in T_x M \) que apunta hacia afuera de \(M \) se tiene que \(\{w, w_1, \ldots, w_{m-1}\} \) es una base positiva de \(T_x M \). En particular, si \(n(x) \in T_x M \) es el vector unitario tangente a \(M \) y normal a \(\partial M \) en el punto \(x \), entonces una base \(\{w_1, \ldots, w_{m-1}\} \) de \(T_x \partial M \) es positiva si, y sólo si, \(\{n(x), w_1, \ldots, w_{m-1}\} \) es una base positiva de \(T_x M \). En efecto, una base \(\{w_1, \ldots, w_{m-1}\} \) de \(T_x \partial M \) es positiva si, y sólo si,

\[
\begin{pmatrix}
\partial \varphi(u)/\partial u_1 \\
\partial \varphi(u)/\partial u_2 \\
\vdots \\
\partial \varphi(u)/\partial u_m
\end{pmatrix}
\]

para la base \(\{w, w_1, \ldots, w_{m-1}\} \) tiene la forma

\[
A = \begin{pmatrix}
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & a_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mm}
\end{pmatrix}_{m \times m}
\]

Luego \(\det A = a_{11} \det A_0 \), es decir, \(\det A > 0 \) si, y sólo si, \(\det A_0 > 0 \), esto significa que cuando \(w \in T_x M \) apunta hacia afuera de \(M \) entonces \(\{w_1, \ldots, w_{m-1}\} \) es una base positiva de \(T_x \partial M \) si, y sólo si, \(\{w, w_1, \ldots, w_{m-1}\} \) es una base positiva de \(T_x M \).

Ejemplo El intervalo cerrado \([0, 1]\) es una superficie 1-dimensional de
clase C^∞ con borde, donde $\partial[0,1] = \{0,1\}$. En efecto, basta tomar el atlas $\mathcal{A} = \{\varphi, \psi\}$, donde $\varphi : [0,1[\to [0,1[\ y \ \psi :]0,1[\to]0,1]$ son las aplicaciones identidad correspondientes. El dominio de φ es un conjunto abierto de la semi–recta $[0,+\infty[$ el cual es un semi–espacio de \mathbb{R}, y el dominio de ψ es un conjunto abierto de la semi–recta $]-\infty,0]$ el cual también es un semi–espacio de \mathbb{R}. El cambio de coordenadas es la aplicación identidad, luego \mathcal{A} es un atlas coherente que define la orientación natural de $[0,1]$.

Cuando M es una superficie con borde y $\dim M = 1$ se tiene que $\dim \partial M = 0$, por lo tanto es un conjunto aislado de puntos. Orientar una superficie de dimensión 0, es por definición, asignar un signo $+$ o un signo $-$ a cada uno de esos puntos. Si $\dim M = 1$ y M está orientada, la orientación de ∂M inducida por la de M es dada como sigue: en un punto $x \in \partial M$ será $+x$ si cada vector que forma una base positiva de $T_x M$ apunta hacia afuera de M y será $-x$ en caso contrario. En el caso de $M = [0,1]$ orientada por el atlas $\mathcal{A} = \{\varphi, \psi\}$ la orientación inducida en $\partial[0,1] = \{0,1\}$ asigna el signo $+$ a 1 y el signo $-$ a 0, es decir, $\partial[0,1] = \{+1\} \cup \{-0\}$. Análogamente para las semi–rectas $M =]-\infty,r]$ y $N = [t,+\infty[\orientadas por el atlas con una única parametrización igual a la identidad, tenemos $\partial = \{+r\}$ y $\partial N = \{-t\}$.

Si M y N son superficies con borde, el producto cartesiano $M \times N$ no es una superficie con borde, por ejemplo consideremos $M = N = [0,1]$, entonces $M \times N = [0,1] \times [0,1]$ no es una superficie con borde.

Ahora, si sólo una de las superficies M o N tiene borde (no vacío) entonces el producto cartesiano $M \times N$ es una superficie con borde, por ejemplo si $\partial M \neq \emptyset$ y $\partial N = \emptyset$ entonces $\partial(M \times N) = (\partial M) \times N$. En efecto, usando parametrizaciones del tipo $\varphi \times \psi$, donde $\varphi : U_0 \subset \mathbb{H}^m \to U \subset M \ y \ \psi : V_0 \subset \mathbb{H}^n \to V \subset N$, con $U_0 \subset \mathbb{H}^m$ y $V_0 \subset \mathbb{R}^n$ abiertos
entonces $U_0 \times V_0$ es un conjunto abierto del semi–espacio $\mathbb{H}^m \times \mathbb{R}^n$ y $\partial(U_0 \times V_0) = (\partial U_0) \times V_0$. Si la superficie con borde M y la superficie sin borde N son orientables entonces la superficie con borde $M \times N$ es orientable, y la orientación es definida por el atlas \mathcal{P} formado por las parametrizaciones $\varphi \times \psi$, donde φ es positiva respecto de la orientación de M y ψ es positiva respecto de la orientación de N. La coherencia del atlas \mathcal{P} se obtiene de la igualdad $(\varphi_2 \times \psi_2)^{-1} \circ (\varphi_1 \times \psi_1) = (\varphi_2^{-1} \circ \varphi_1) \times (\psi_2^{-1} \circ \psi_1)$.

9.2 Ejercicios

1. Sea M una superficie orientable, sin borde, y considere la superficie con borde $I \times M$, donde $I = [0, 1]$. Estudie la orientación de $\partial(I \times M)$.

2. Pruebe que el hiperboloide sólido dado por

$$H = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 \leq a\}, \quad a > 0$$

es una superficie orientable con borde ¿Cuál es el borde de H?

3. Encuentre los valores de a para los cuales la intersección del hiperboloide sólido $H = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 \leq a\}$ (a $\neq 0$) y la bola unitaria $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 1\}$ es una superficie con borde (el cual puede ser vacío)).

4. Considere el rectángulo cerrado $R = [0, 5] \times [0, 1]$ y defina una relación de equivalencia, \sim, en R como sigue: en $R_{14} = [1, 4] \times [0, 1]$ se identifica cada punto consigo mismo, y en $R_{01} \cup R_{45} = [0, 1] \times [0, 1] \cup [4, 5] \times [0, 1]$ se identifica $(x, y) \in R_{01}$ con el punto $(x + 4, 1 - y) \in R_{45}$. Demuestre que $M = R/\sim$ es una superficie
no orientable con borde, y que el borde de $M = R/ \sim$ es una superficie orientable ¿Cuál es la superficie borde de M?

5. (a) Sea M^m una superficie con borde. Pruebe que ∂M es un subconjunto cerrado de M. En particular, si M es compacta entonces ∂M es compacta.

(b) Encuentre un ejemplo, al menos, de una superficie con borde M^m, tal que ∂M es compacta, pero M no lo es.

6. Sea $M = \{(x, y) \in \mathbb{R}^2 : y \geq 0\}$. Pruebe que para cada aplicación de clase C^1, $g : \mathbb{R} \rightarrow \mathbb{R}$, la aplicación $f : M \rightarrow \mathbb{R}$ dada por $f(x, y) = y + g(x)$ es de clase C^1, y para cada $(x, y) \in M$ se tiene que $f(x, y) = r$ es un valor regular de f.

Ahora, sea $g : \mathbb{R} \rightarrow \mathbb{R}$, dada por

$$g(x) = \begin{cases}
 e^{-1/x^2} \sin(1/x) & \text{si } x \neq 0 \\
 0 & \text{si } x = 0.
\end{cases}$$

Pruebe que f es de clase C^∞, y que 0 es un valor regular de f, pero $f^{-1}(0)$ no es una superficie ¿Qué puede decir respecto del Teorema de la Función Implicita en este caso?

7. Sea $f : [a, b] \rightarrow \mathbb{R}$ una aplicación diferenciable. Pruebe que $\text{graf}(f) = \{(x, f(x)) : x \in [a, b]\}$ es una superficie con borde ¿Cuál es el borde de $\text{graf}(f)$?, ¿Es $\text{graf}(f)$ orientable?

8. Demuestre que las superficies con borde $M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 1\}$ y $N = \{(x, y, z) \in \mathbb{R}^3 : b^2c^2x^2 + a^2c^2y^2 + a^2b^2z^2 \leq a^2b^2c^2\}$ son difeomorfas.
(Indicación: El difeomorfismo puede ser construido en forma geométrica o en forma directa definiéndolo.)

9. Demuestre que toda superficie \(n \)-dimensional compacta con borde, \(M \subset \mathbb{R}^n \), es orientable.

10. Sea \(M^m \subset \mathbb{R}^n \) una superficie con borde. Suponga que \(\partial M \) es orientable. ¿Es \(M \) orientable?

11. Sea \(f : B[0,1] \subset \mathbb{R}^m \to \mathbb{R}^n \) una aplicación de clase \(C^r \) \((r \geq 1) \), donde \(B[0,1] \) denota la bola cerrada de centro en 0 y radio 1 en \(\mathbb{R}^m \). Sea \(M = \text{graf}(f) \). Pruebe que \(M \) es una superficie \(m \)-dimensional con borde y clase \(C^r \), definiendo explícitamente las parametrizaciones. También puede hacerlo usando valores regulares.

12. (a) ¿Puede el gráfico de la función valor absoluto \(|\cdot| : \mathbb{R} \to \mathbb{R} \) ser el borde de una superficie 2-dimensional de clase \(C^r \), \(r \geq 1 \), con borde?

(b) Si \(M \) es una superficie compacta con borde ¿Puede \(\partial M \) ser una superficie no compacta?

(c) Sea \(M \) una superficie conexa con borde. ¿Es necesariamente \(\partial M \) una superficie conexa?

(d) ¿Puede el gráfico de la función \(f : \mathbb{R} \to \mathbb{R} \) dada por \(f(x) = |\text{sen}(x)|^{1/2} \) ser el borde de una superficie 2-dimensional de clase \(C^r \), \(r \geq 1 \), con borde?
Superficies con Borde
Capítulo 10

Cálculo Integral

En este capítulo estudiaremos el concepto de integral, primero para funciones de variable real a valores en algún espacio euclidiano, y enseguida para funciones de varias variables a valores reales. Los conceptos más importantes tratados aquí son: integral, conjuntos de medida nula, conjuntos de contenido cero.

10.1 Integral de Caminos

Sea \(f : [a, b] \rightarrow \mathbb{R}^n \) un camino. Escribimos \(f = (f_1, \ldots, f_n) \), donde \(f_i : [a, b] \rightarrow \mathbb{R} \) (\(i = 1, \ldots, n \)) son las funciones coordenadas de \(f \). Como cada función coordenada es una función real a valores reales, sabemos cómo definir (y calcular, cuando es posible hacerlo en forma exacta) su integral. Decimos que un camino \(f : [a, b] \rightarrow \mathbb{R}^n, f = (f_1, \ldots, f_n) \) es integrable si cada función coordenada \(f_i : [a, b] \rightarrow \mathbb{R} \) es integrable, y definimos la integral del camino \(f \) como el vector

\[
\int_a^b f = \left(\int_a^b f_1, \ldots, \int_a^b f_n \right).
\]
Las siguientes propiedades son fáciles de demostrar (pues se reducen al caso de funciones reales a valores reales) y se dejan a cargo del lector.

Teorema 10.1 Sean \(f, g : [a, b] \to \mathbb{R}^n \) caminos integrables. Entonces para cualquier número real \(\lambda \) y cualquier transformación lineal \(T : \mathbb{R}^n \to \mathbb{R}^m \) los caminos \(f \pm g \), \(\lambda f \) y \(T \circ f \) son integrables. Además,

1. \(\int_a^b (f \pm g) = \int_a^b f \pm \int_a^b g \);
2. \(\int_a^b \lambda f = \lambda \int_a^b f \);
3. \(\int_a^b T \circ f = T \left(\int_a^b f \right) \);
4. \(\left\| \int_a^b f \right\| \leq \int_a^b \|f\| = (b - a)\|f\| \), donde \(\|f\| \) denota la norma sobre el espacio de funciones acotadas, la cual es definida por \(\|f\| = \sup \{\|f(t)\| : a \leq t \leq b\} \).

Teorema 10.2 Sea \(f : [a, b] \to \mathbb{R}^n \) un camino integrable. Para todo \(c \in [a, b] \) se tiene

\[
\int_a^b f = \int_a^c f + \int_c^b f .
\]

Teorema 10.3 Sea \(f : [a, b] \to \mathbb{R}^n \) un camino integrable. Definamos el camino \(F : [a, b] \to \mathbb{R}^n \) por \(F(x) = \int_a^x f(t) \, dt \). Entonces \(F \) es un camino continuo. Además, si el camino \(f \) es continuo entonces el camino \(F \) es de clase \(C^1 \) y \(\frac{dF}{dx}(x) = f(x) \).

Corolario 10.4 Sea \(U \subset \mathbb{R}^m \) un conjunto abierto. Dada una aplicación \(f : U \to \mathbb{R}^n \) de clase \(C^r \) (\(r \geq 1 \)), supongamos que el segmento de recta \([x, x + h] = \{x + th : 0 \leq t \leq 1\} \) está contenido en \(U \). Entonces

\[
f(x + h) - f(x) = \int_0^1 Df(x + th)h \, dt .
\]
Demostración. Consideremos el camino \(\theta : [0, 1] \rightarrow \mathbb{R}^n \) dado por \(\theta(t) = f(x + th) \). Es claro que el camino \(\theta \) es de clase \(C^r \) y satisface \(\theta(0) = f(x), \ \theta(1) = f(x + h) \), y por la regla de la cadena \(\theta'(t) = Df(x + th)h \), aplicando el teorema anterior el resultado se sigue inmediatamente.

Recuerdo. Sea \(\mathcal{P} = \{t_0, \ldots, t_k\} \), con \(t_0 = a < t - 1 < \cdots < t_k = b \), una partición de \([a, b] \). Usamos la notación \(|\mathcal{P}| = \max\{|t_i - t_{i-1}| : \ i = 1, \ldots, k\} \) para denotar la norma de la partición \(\mathcal{P} \). Recordemos una función \(g : [a, b] \rightarrow \mathbb{R} \) es rectificable si existe un número real \(\ell(g) \), tal que para cada \(\varepsilon > 0 \) dado, existe \(\delta > 0 \) con la propiedad que si \(\mathcal{P} = \{t_0, \ldots, t_k\} \), con \(t_0 = a < t_1 < \cdots < t_k = b \) es una partición de \([a, b] \) entonces

\[
|\mathcal{P}| < \delta \text{ implica } \left| \ell(g) - \sum_{i=1}^{k} |g(t_i) - g(t_{i-1})| \right| < \varepsilon .
\]

Podemos definir el número

\[
\ell(g, \mathcal{P}) = \sum_{i=1}^{k} |g(t_i) - g(t_{i-1})|
\]

y tenemos que \(\ell(g) = \lim_{|\mathcal{P}| \rightarrow 0} \ell(g, \mathcal{P}) \).

Ahora si \(g : [a, b] \rightarrow \mathbb{R} \) es de clase \(C^r \) \((r \geq 1) \) entonces, usando el Teorema del Valor Medio del cálculo diferencial, se prueba que

\[
\ell(g) = \int_{a}^{b} |g'| .
\]

Ahora, sea \(f : [a, b] \rightarrow \mathbb{R}^n \) es un camino, \(f = (f_1, \ldots, f_n) \). Decimos que \(f \) es rectificable si cada función coordenada \(f_i : [a, b] \rightarrow \mathbb{R} \) \((i = 1, \ldots, n) \) es rectificable. Notemos que si, \(\mathcal{P} \) es una partición de \([a, b] \) entonces \(\ell(f, \mathcal{P}) = (\ell(f_1, \mathcal{P}), \ldots, \ell(f_n, \mathcal{P})) \). Si \(f \) es rectificable, se define
su longitud como
\[\ell(f) = \lim_{|\mathcal{P}| \to 0} \| \ell(f, \mathcal{P}) \| = \left\| \left(\lim_{|\mathcal{P}| \to 0} \ell(f_1, \mathcal{P}), \ldots, \lim_{|\mathcal{P}| \to 0} \ell(f_n, \mathcal{P}) \right) \right\| \.
\]

De modo análogo al caso de funciones de variable real a valores reales se prueba, en este caso, que si \(f \) es un camino de clase \(C^r \) \((r \geq 1)\) entonces la longitud de \(f \) es dada por
\[\ell(f) = \int_a^b \| f'(t) \| \, dt = \int_a^b \sqrt{(f'_1(t))^2 + \cdots + (f'_n(t))^2} \, dt . \]

10.2 Integrales Múltiples

Un rectángulo compacto en \(\mathbb{R}^m \) es un conjunto \(R \) de la forma \([a_1, b_1] \times \cdots \times [a_m, b_m] \), donde \([a_j, b_j] \) es un intervalo compacto.

Definición 10.1 Una partición de un rectángulo compacto \(R = [a_1, b_1] \times \cdots \times [a_m, b_m] \) es una colección \(\mathcal{P} = \{P_1, \ldots, P_m\} \), donde \(P_i \) es una partición del intervalo compacto \([a_i, b_i] \), para \(i = 1, \ldots, m \).

Sea \(\mathcal{P} \) una partición del rectángulo \(R \subset \mathbb{R}^m \). Si \(P_i \) divide al intervalo \([a_i, b_i] \) en \(N_i \) intervalos entonces \(\mathcal{P} \) divide a \(R \) en \(N = N_1 \cdot N_2 \cdots N_m \) subrectángulos, llamados subrectángulos de la partición.

Dado un rectángulo compacto \(R \subset \mathbb{R}^m \) y una partición \(\mathcal{P} \) de \(R \). Sea \(f : R \to \mathbb{R} \) una función acotada. Para cada subrectángulo \(R_k \) de \(R \) definimos
\[m_{R_k}(f) = \inf \{ f(x) : x \in R_k \} \]
\[M_{R_k}(f) = \sup \{ f(x) : x \in R_k \} . \]

Si \(R = [a_1, b_1] \times \cdots \times [a_m, b_m] \) es un rectángulo, definimos su volumen como \(\text{vol}(R) = (b_1 - a_1) \cdots (b_m - a_m) \).

Observación. En lo que sigue, sólo consideramos rectángulos compactos, salvo mención contraria explícita.
Definición 10.2 La suma inferior y la suma superior de f correspondientes a una partición \mathcal{P} son definidas, respectivamente, por

$$s(f, \mathcal{P}) = \sum_S m_S(f) \text{vol}(S) \quad \text{y} \quad S(f, \mathcal{P}) = \sum_S M_S(f) \text{vol}(S),$$

donde la suma es tomada sobre todos los subrectángulos S de la partición \mathcal{P} del rectángulo R.

Desde la definición es claro que $m_S(f, \mathcal{P}) \leq M_S(f, \mathcal{P})$ para todo subrectángulo S de la partición \mathcal{P} de R, y por lo tanto $s(f, \mathcal{P}) \leq S(f, \mathcal{P})$.

Definición 10.3 Sean \mathcal{P} y \mathcal{P}' particiones de R. Decimos que \mathcal{P}' es una partición más fina que \mathcal{P} si, cada subrectángulo de \mathcal{P} es una unión finita de subrectángulos de \mathcal{P}'.

Lema 10.1 Sea $R \subset \mathbb{R}^m$ un rectángulo y sea $f : R \to \mathbb{R}$ una función acotada. Sean \mathcal{P}' y \mathcal{P} particiones de $R \subset \mathbb{R}^m$. Si \mathcal{P}' es más fina que \mathcal{P} entonces $s(f, \mathcal{P}) \leq s(f, \mathcal{P}')$ y $S(f, \mathcal{P}') \leq S(f, \mathcal{P})$.

Demostración. Cada rectángulo R_j de \mathcal{P} se divide en varios subrectángulos $R_{j,1}, \ldots, R_{j,\alpha}$ de \mathcal{P}', de modo que $\text{vol}(R_j) = \text{vol}(R_{j,1}) + \cdots + \text{vol}(R_{j,\alpha})$. Es claro que $m_{R_j}(f) \leq m_{R_{j,i}}(f)$, para cada $i = 1, \ldots, \alpha$, puesto que los valores $f(x)$ para $x \in R_j$ incluyen todos los valores $f(x)$ cuando $x \in R_{j,i}$, y posiblemente otros menores. Luego,

$$m_{R_j}(f) \text{vol}(R_j) = m_{R_{j,1}}(f) \text{vol}(R_{j,1}) + \cdots + m_{R_{j,\alpha}}(f) \text{vol}(R_{j,\alpha}) \leq m_{R_{j,1}}(f) \text{vol}(R_{j,1}) + \cdots + m_{R_{j,\alpha}}(f) \text{vol}(R_{j,\alpha}),$$

de donde se concluye que $s(f, \mathcal{P}) \leq s(f, \mathcal{P}')$. De modo análogo se prueba que $S(f, \mathcal{P}') \leq S(f, \mathcal{P})$.

Corolario 10.5 Sean \mathcal{P} y \mathcal{P}' particiones de un rectángulo $R \subset \mathbb{R}^m$ y sea $f : R \to \mathbb{R}$ una función acotada. Entonces $s(f, \mathcal{P}') \leq S(f, \mathcal{P})$.

Demostración. Tomemos la partición $\mathcal{P}'' = \mathcal{P} \cup \mathcal{P}'$ de R. Tenemos entonces que $s(f, \mathcal{P}') \leq s(f, \mathcal{P}'') \leq S(f, \mathcal{P}'') \leq S(f, \mathcal{P})$.

Dado un rectángulo $R \subset \mathbb{R}^m$ y una función acotada $f : R \to \mathbb{R}$. Definimos la colección $\mathcal{P}(R) = \{ \mathcal{P} : \mathcal{P} \text{ es una partición de } R \}$ de las particiones del rectángulo R, y las colecciones $\Sigma_{\text{inf}}(f) = \{ s(f, \mathcal{P}) : \mathcal{P} \in \mathcal{P}(R) \}$ y $\Sigma_{\text{sup}}(f) = \{ S(f, \mathcal{P}) : \mathcal{P} \in \mathcal{P}(R) \}$ de las sumas inferiores y superiores, respectivamente. Tenemos que cada elemento $s \in \Sigma_{\text{inf}}(f)$ es menor o igual que que cada elemento $S \in \Sigma_{\text{sup}}(f)$, esto es, cada elemento $s \in \Sigma_{\text{inf}}(f)$ es una cota inferior de $\Sigma_{\text{sup}}(f)$ y cada elemento $S \in \Sigma_{\text{sup}}(f)$ es una cota superior de $\Sigma_{\text{inf}}(f)$. Por lo tanto $\sup \Sigma_{\text{inf}}(f) \leq \inf \Sigma_{\text{sup}}(f)$.

Definición 10.4 Sea $R \subset \mathbb{R}^m$ un rectángulo compacto. Sea $f : R \to \mathbb{R}$ es una función acotada. Se definen

$$
\sup \Sigma_{\text{inf}}(f) = \int_R f \quad y \quad \inf \Sigma_{\text{sup}}(f) = \overline{\int_R f},
$$

y son llamadas, respectivamente, integral inferior e integral superior de f sobre R.

Definición 10.5 Sea $R \subset \mathbb{R}^m$ un rectángulo y sea $f : R \to \mathbb{R}$ una función acotada. Decimos que f es integrable sobre R si $\sup \Sigma_{\text{inf}}(f) = \inf \Sigma_{\text{sup}}(f)$. El valor común es llamado integral de f sobre R y es denotado por $\int_R f$ o bien por $\int_R f(x_1, \ldots, x_m)dx_1 \cdots dx_m$.

Tenemos entonces que $f : R \to \mathbb{R}$ es integrable si, y sólo si, $\int_R f = \overline{\int_R f}$.
Como en el caso de funciones de variable real a valores reales, tenemos el siguiente teorema, cuya prueba es fácil y se deja al lector.

Teorema 10.6 Sea $R \subset \mathbb{R}^m$ un rectángulo compacto. Sean $f, g : R \to \mathbb{R}$ funciones acotadas e integrables entonces las funciones $f + g$ y λf, donde $\lambda \in \mathbb{R}$ es una constante, $|f|$, $f \cdot g$, f^2 son integrables. Además, se tiene $\int_R (f + g) = \int_R f + \int_R g$, $\int_R \lambda f = \lambda \int_R f$, $|\int_R f| \leq \int_R |f|$, $|\int_R f| \leq ||f|| \operatorname{vol}(R)$, donde $||f|| = \sup \{|f(x)| : x \in R\}$.

Teorema 10.7 Sea $R \subset \mathbb{R}^m$ un rectángulo, y sea $f : R \to \mathbb{R}$ una función acotada. Entonces f es integrable sobre R si, y sólo si, para cada $\varepsilon > 0$ dado existe una partición $\mathcal{P} \in \mathcal{P}(R)$, tal que $S(f, \mathcal{P}) - s(f, \mathcal{P}) < \varepsilon$.

Demostración. Si la condición vale, entonces claramente se tiene que $\sup \Sigma_{\inf}(f) = \inf \Sigma_{\sup}(f)$, por lo tanto f es integrable.

Recíprocamente, si f es integrable sobre R entonces $\sup \Sigma_{\inf}(f) = \inf \Sigma_{\sup}(f)$. Luego para cada $\varepsilon > 0$ dado, existen particiones $\mathcal{P}, \mathcal{P}' \in \mathcal{P}(R)$ con $S(f, \mathcal{P}) - s(f, \mathcal{P}') \leq \varepsilon$. Tomemos una partición $\mathcal{P}'' \in \mathcal{P}(R)$ más fina que \mathcal{P} y que \mathcal{P}', tenemos entonces que $S(f, \mathcal{P}'') - s(f, \mathcal{P}'') \leq S(f, \mathcal{P}) - s(f, \mathcal{P}') \leq 2\varepsilon$.

Ejemplos.

1. Sea $f : R \to \mathbb{R}$ una función constante, $f(x) = k$. Entonces para cada partición \mathcal{P} de R y cada subrectángulo R_j de R se tiene que $m_{R_j}(f) = M_{R_j}(f) = k$, de donde $s(f, \mathcal{P}) = S(f, \mathcal{P}) = \sum_{R_j \in \mathcal{P}} k \operatorname{vol}(R_j) = k \operatorname{vol}(R)$, por lo tanto f es integrable sobre R y $\int_R f = k \operatorname{vol}(R)$.
2. Sea \(f : [0,1] \times [0,1] \to \mathbb{R} \) definida por

\[
 f(x, y) = \begin{cases}
 0 & \text{si } x \text{ es racional} \\
 1 & \text{si } x \text{ es irracional}.
\end{cases}
\]

Si \(P \in \mathcal{P}([0,1] \times [0,1]) \) entonces cada subrectángulo \(R_\alpha \) de \([0,1] \times [0,1]\) contiene puntos \((x_1, y_1)\) con \(x_1 \) racional y puntos \((x_2, y_2)\) con \(x_2 \) irracional. Por lo tanto, \(m_R(f) = 0 \) y \(M_R(f) = 1 \), de esto obtenemos que \(s(f, P) = \sum_{R_\alpha \in \mathcal{P}} 0 \text{vol}(R_\alpha) = 0 \) y \(S(f, P) = \sum_{R_\alpha \in \mathcal{P}} 1 \text{vol}(R_\alpha) = \text{vol}([0,1] \times [0,1]) = 1 \), esto muestra que \(f \) no es integrable.

10.3 Conjuntos de Medida Cero y Conjuntos de Contenido

En esta sección introducimos los conceptos de medida y de contenido de conjuntos, los cuales nos permitirán estudiar más profundamente la integral.

Definición 10.6 Un subconjunto \(A \subset \mathbb{R}^m \) tiene medida \(m \)-dimensional cero si, para cada \(\varepsilon > 0 \), existe un cubrimiento numerable \(\{U_1, U_2, \ldots\} \) de \(A \) por rectángulos compactos, tal que \(\sum_{i \geq 1} \text{vol}(U_i) < \varepsilon \).

Es inmediato ver que si \(A \subset \mathbb{R}^m \) tiene medida \(m \)-dimensional cero y \(B \subset A \) entonces \(B \) tiene medida \(m \)-dimensional cero.

Observación. En la definición anterior podemos usar rectángulos abiertos en lugar de rectángulos compactos, los resultados no varían en nada.

Ejemplos

1. Todo conjunto finito tiene medida cero. Esto es inmediato.
2. Todo conjunto numerable tiene medida cero.

En efecto, sea \(A \subset \mathbb{R}^m \) un conjunto numerable. Ordenamos los puntos de \(A \) formando una sucesión \(a_1, a_2, \ldots \). Para cada \(\varepsilon > 0 \) dado, elegimos un rectángulo compacto \(U_i \) con \(a_i \in U_i \) y \(\text{vol}(U_i) < \varepsilon/2^i \). Tenemos entonces que \(\sum_{i=1}^{\infty} \text{vol}(U_i) \leq \sum_{i=1}^{\infty} \varepsilon/2^i = \varepsilon \), lo que prueba la afirmación. Por ejemplo, \(A = \{ x \in [0,1] : x \text{ es racional} \} \) es numerable, por lo tanto tiene medida 1-dimensional cero en \(\mathbb{R} \).

agregar el conjunto de Cantor tercio

Teorema 10.8 Sea \(\mathcal{A} = \{ A_i \subset \mathbb{R}^m : i \geq 1 \} \) una colección numerable de conjuntos de medida \(m \)-dimensional cero entonces \(A = \bigcup_{i \geq 1} A_i \) tiene medida \(m \)-dimensional cero.

Demostración. Sea \(\varepsilon > 0 \) dado. Como cada conjunto \(A_i \) de la colección \(\mathcal{A} \) tiene medida \(m \)-dimensional cero, existe un cubrimiento numerable \(\{ U_{i,1}, U_{i,2}, \ldots \} \) de \(A_i \) por rectángulos compactos tal que \(\sum_{j=1}^{\infty} \text{vol}(U_{i,j}) < \varepsilon/2^i \). La colección de los rectángulos compactos \(\mathcal{U} = \{ U_{i,j} \}_{i,j \geq 1} \) es un cubrimiento de \(A \). Definamos un nuevo cubrimiento \(\mathcal{V} = \{ V_2, V_3, \ldots \} \) de \(A \) como sigue: \(V_2 = U_{1,1}, \ V_3 = U_{1,2} \cup U_{2,1}, \ V_4 = U_{1,3} \cup U_{2,2} \cup U_{3,1}, \ V_5 = U_{1,4} \cup U_{2,3} \cup U_{3,2} \cup U_{4,1}, \) y así sucesivamente. Tenemos que \(\sum_{k=2}^{\infty} \text{vol}(V_k) \leq \sum_{i=1}^{\infty} \varepsilon/2^i = \varepsilon \).

Definición 10.7 Sea \(A \subset \mathbb{R}^m \). Decimos que \(A \) tiene contenido \(m \)-dimensional cero si, para cada \(\varepsilon > 0 \) dado, existe un cubrimiento finito \(\{ U_1, \ldots, U_k \} \) de \(A \) por rectángulos compactos (o abiertos) tal que \(\sum_{i=1}^{k} \text{vol}(U_i) < \varepsilon \).

Observación. Es claro que si \(A \subset \mathbb{R}^m \) tiene contenido cero entonces tiene medida cero. La recíproca es falsa, y dejamos al lector la tarea de
construir ejemplos.

Recordemos que un subconjunto \(C \subset \mathbb{R}^m \) es compacto si, cada cubrimiento de \(C \) por conjuntos abiertos contiene un subcubrimiento finito, es decir, si \(\{O_\alpha : \alpha \in \Lambda \} \) es un cubrimiento de \(C \) por conjuntos abiertos entonces existe una cantidad finita de índices, digamos \(\alpha_1, \ldots, \alpha_\ell \in \Lambda \), tal que \(C \subset \bigcup_{i=1}^\ell O_{\alpha_i} \).

Tenemos el siguiente teorema.

Teorema 10.9 Sea \(A \subset \mathbb{R}^m \) un conjunto compacto. Si \(A \) tiene medida \(m \)-dimensional cero entonces tiene contenido \(m \)-dimensional cero.

Demostración. Sea \(\varepsilon > 0 \) dado. Como \(A \) tiene medida cero, existe un cubrimiento numerable \(\mathcal{U} = \{U_1, U_2, \ldots \} \) de \(A \) formado por rectángulos abiertos tales que \(\sum_{i=1}^\infty \text{vol}(U_i) \leq \varepsilon \). Como \(A \) es compacto, existe un subcubrimiento finito \(\{U_{i_1}, \ldots, U_{i_k}\} \subset \mathcal{U} \) de \(A \), y es claro que \(\sum_{j=1}^k \text{vol}(U_{i_j}) \leq \varepsilon \).

Observación. La conclusión del teorema anterior es falsa si \(A \) no es compacto. Por ejemplo, consideremos el conjunto \(A = \{x \in [0,1] : x \text{ es racional} \} \). Vimos que \(A \) tiene medida 1–dimensional cero. Vamos a mostrar ahora que no tiene contenido 1–dimensional cero. Para esto supongamos que \(A \) tiene contenido cero y que \(\{[a_1,b_1], \ldots, [a_k,b_k]\} \) es un cubrimiento de \(A \). Entonces \(A \) está contenido en el conjunto compacto \([a_1,b_1] \cup \cdots \cup [a_k,b_k]\), por lo tanto, tomando clausura se tiene que \(\overline{A} = [0,1] \subset [a_1,b_1] \cup \cdots \cup [a_k,b_k] \) y que \(\sum_{i=1}^k (b_i - a_i) \geq 1 \) para todo cubrimiento de este tipo, por lo tanto \(A \) no tiene contenido cero.

Otro ejemplo más simple es considerar \(A = \mathbb{N} \). Se tiene que \(\mathbb{N} \) tiene medida 1–dimensional cero (por ser numerable), pero no tiene contenido 1–dimensional cero como es fácil de verificar.
Sea $f : A \subset \mathbb{R}^m \to \mathbb{R}$ una función acotada. Si f no es continua en un punto $x_0 \in A$, la medida de la discontinuidad de f en x_0 se obtiene como sigue: sea $\delta > 0$ dado, definimos los números $M(f, x_0, \delta) = \sup\{f(x) : x \in A \text{ y } ||x - x_0|| < \delta\}$ y $m(f, x_0, \delta) = \inf\{f(x) : x \in A \text{ y } ||x - x_0|| < \delta\}$.

Definición 10.8 La oscilación de $f : A \subset \mathbb{R}^m \to \mathbb{R}$ en $x \in A$, denotada por $O(f, x)$, es

$$O(f, x) = \lim_{\delta \to 0} (M(f, x, \delta) - m(f, x, \delta)).$$

Observación. El límite en la definición anterior existe siempre, pues no es difícil probar que $M(f, x, \delta) - m(f, x, \delta)$ es una función no creciente y positiva de δ cuando $\delta \to 0$.

Teorema 10.10 Sean $R \subset \mathbb{R}^m$ un rectángulo y $f : R \to \mathbb{R}$. Entonces f es continua en $x_0 \in R$ si, y sólo si, $O(f, x_0) = 0$.

Demostración. Si f es continua en x_0 entonces para cada $\varepsilon > 0$ dado, existe $\delta > 0$ tal que $x \in R$ y $||x - x_0|| < \delta$ implica $|f(x) - f(x_0)| < \varepsilon$, es decir, $-\varepsilon + f(x_0) \leq f(x) \leq \varepsilon + f(x_0)$, por lo tanto, $m(f, x_0, \varepsilon) \geq -\varepsilon + f(x_0)$ y $M(f, x_0, \varepsilon) \leq \varepsilon + f(x_0)$. Luego $M(f, x_0, \delta) - m(f, x_0, \delta) < 2\varepsilon$, de donde $O(f, x_0) = 0$. La prueba de la recíproca es inmediata.

Teorema 10.11 Sea $A \subset \mathbb{R}^m$ un conjunto cerrado. Si $f : A \to \mathbb{R}$ es una función acotada y $\varepsilon > 0$ es arbitrario. Entonces el conjunto $B = \{x \in A : O(f, x) \geq \varepsilon\}$ es cerrado.

Demostración. Tenemos que B es cerrado si, y sólo si, su complemento $\mathbb{R}^m - B$ es abierto. Sea $x \in \mathbb{R}^m - B$ entonces o bien $x \notin A$ o bien $x \in A$ y $O(f, x) < \varepsilon$. En el primer caso, como A es cerrado, existe un
rectángulo abierto O que contiene a x tal que $O \subset \mathbb{R}^m - A \subset \mathbb{R}^m - B$.

En el segundo caso, existe $\delta > 0$ tal que $M(f, x, \delta) - m(f, x, \delta) < \varepsilon$. Sea O un rectángulo abierto que contiene a x y tal que $||x - y|| < \delta$ para todo $y \in O$. Entonces, si $y \in O$ existe $\delta_1 > 0$ tal que $||x - z|| < \delta_1$. Luego, $M(f, z, \delta) - m(f, z, \delta) < \varepsilon$, y por lo tanto $O(f, z) < \varepsilon$, de donde $O \subset \mathbb{R}^m - B$. Esto termina la prueba.

El siguiente resultado es uno de los más importantes en la teoría de integración que estamos desarrollando.

Teorema 10.12 Sea $R \subset \mathbb{R}^m$ un rectángulo compacto y sea $f : R \to \mathbb{R}$ una función acotada. Denotemos por $D(f)$ el conjunto de puntos de discontinuidad de f. Entonces f es integrable sobre R si, y sólo si, $D(f)$ tiene medida cero.

Demostración. Supongamos que $D(f)$ tiene medida m-dimensional cero. Cubrimos $D(f)$ por una cantidad numerable de rectángulos abiertos $\text{int}(R_1), \text{int}(R_2), \ldots$, donde cada R_i es un rectángulo compacto y $\sum_{i \geq 1} \text{vol}(R_i) < \varepsilon$. Ahora, para cada punto $x \in R - D(f)$ podemos elegir un rectángulo abierto $\text{int}(R_x)$ que contiene a x tal que $|f(y) - f(x)| < \varepsilon$ para $y \in R \cap \text{int}(R_x)$, esto pues f es continua en un tal x. Los conjuntos abiertos $\text{int}(R_x)$ para cada $x \in R - D(f)$ e $\text{int}(R_i)$, para $i = 1, 2, \ldots$ cubren R. Como R es compacto, podemos elegir una subcolección finita de tales conjuntos abierto que aún cubren a R, digamos $\text{int}(R_1), \ldots, \text{int}(R_k), \text{int}(R_{x_1}), \ldots, \text{int}(R_{x_r})$. Denotemos, por conveniencia, los rectángulos del tipo R_{x_j} simplemente por R'_j.

La colección de rectángulos R_1, \ldots, R_k satisface $\sum_{i=1}^{k} \text{vol}(R_i) < \varepsilon$, y los rectángulos R'_j satisfacen la condición $|f(x) - f(y)| < 2\varepsilon$ para $x, y \in R'_j \cap R$.

Cálculo Integral
Manteniendo la notación, reemplazamos cada rectángulo R_i y cada rectángulo R'_j por su intersección con R. Es claro que las nuevas colecciones rectángulo $\{R_i\}$ y $\{R'_j\}$ cubren R y satisfacen las respectivas condiciones anteriores.

Ahora, los puntos extremos de los rectángulos $R_1, \ldots, R_k, R'_1, \ldots, R'_\ell$ permiten definir una partición P de R. Tenemos entonces que cada rectángulo R_i y R'_j es determinado por unión de subrectángulos de P.

Dividimos la colección de todos los subrectángulos de R determinados por P en dos subcolecciones disjuntas \mathcal{R} y \mathcal{R}', de modo que cada rectángulo $\tilde{R} \in \mathcal{R}$ está contenido en algún rectángulo R_i, y cada rectángulo $\tilde{R} \in \mathcal{R}'$ está contenido en algún subrectángulo R'_j. Luego $\sum_{R \in \mathcal{R}} (M_R(f) - m_R(f)) \operatorname{vol}(\tilde{R}) \leq 2M \sum_{R \in \mathcal{R}} \operatorname{vol}(\tilde{R})$ y $\sum_{\tilde{R} \in \mathcal{R}'} (M_{\tilde{R}}(f) - m_{\tilde{R}}(f)) \operatorname{vol}(\tilde{R}) \leq 2\varepsilon \sum_{\tilde{R} \in \mathcal{R}} \operatorname{vol}(\tilde{R})$, estas desigualdades siguen de $|f(x) - f(y)| \leq 2M$ para cada x y y en un rectángulo $\tilde{R} \in \mathcal{R}$, y $|f(x) - f(y)| \leq \varepsilon$ para cada x y y en un rectángulo $\tilde{R} \in \mathcal{R}'$. Ahora,

$$\sum_{\tilde{R} \in \mathcal{R}} \operatorname{vol}(\tilde{R}) \leq \sum_{i=1}^{k} \left(\sum_{\tilde{R} \subseteq R_i} \operatorname{vol}(\tilde{R}) \right) = \sum_{i=1}^{k} \operatorname{vol}(R_i) < \varepsilon$$

y también

$$\sum_{\tilde{R} \in \mathcal{R}'} \operatorname{vol}(\tilde{R}) \leq \sum_{\tilde{R} \in \mathcal{R}'} \operatorname{vol}(\tilde{R}) = \operatorname{vol}(R_j).$$

Luego, $S(f, P) - s(f, P) < (2M + 2 \operatorname{vol}(R))\varepsilon$. Lo cual termina la prueba de esta parte.

Para la reciproca observemos que si f es continua en x_0 entonces dado $\varepsilon > 0$ podemos elegir $\delta > 0$ de modo que $|f(x) - f(x_0)| < \varepsilon$ para todo $x \in R$ con $||x - x_0|| < \delta$. De esto se sigue que, $M(f, x_0, \delta) \leq f(x_0) + \varepsilon$ y $m(f, x_0, \delta) \geq f(x_0) - \varepsilon$, y por lo tanto $O(f, x_0) \leq 2\varepsilon$, de donde $O(f, x_0) = 0$.

Ahora supongamos que f es integrable sobre R. Para cada entero positivo k sea $D_k = \{x : O(f,x) \geq 1/k\}$. Entonces el conjunto de las discontinuidades de f es $\bigcup_{k \geq 1} D_k$. Por lo tanto es suficiente mostrar que cada uno de esos conjuntos D_k tiene medida m–dimensional cero.

Fijemos $k \geq 1$. Dado $\varepsilon > 0$ vamos a cubrir D_k por una cantidad numerable de rectángulos de volumen total menor que ε.

Elijamos una partición \mathcal{P} de R tal que $M(f,\mathcal{P}) - m(f,\mathcal{P}) < \varepsilon/(2k)$. Sea D'_k el conjunto de puntos de D_k que pertenecen a ∂R para algún subrectángulo R_j de \mathcal{P}; y sea D''_k el conjunto de los restantes puntos de D_k. Cubrimos los conjuntos D'_k y D''_k por rectángulos con volumen total menor que $\varepsilon/2$.

Para D'_k esto es fácil de hacer, pues dado un rectángulo Q se tiene que ∂Q tiene medida cero en \mathbb{R}^m, luego $\cup_{R_j \in \mathcal{P}} \partial R_j$ tiene medida cero, y como D'_k está contenido en esta unión, se sigue que D'_k tiene medida cero.

Ahora consideremos D''_k. Sean R_1, \ldots, R_ℓ aquellos rectángulos determinados por \mathcal{P} que contienen puntos de D''_k. Vamos a mostrar que el volumen total de esos subrectángulos es menor que $\varepsilon/2$. Dado i el rectángulo R_i contiene un punto x_0 de D''_k; como $x_0 \notin \partial R_i$, existe $\delta > 0$ tal que el rectángulo de lado δ centrado en x_0 está contenido en R_i. Entonces

$$\frac{1}{k} \leq O(f,x_0,\delta) \leq M(f,x_0,\delta) - m(f,\delta) \leq M_{R_i}(f) - m_{R_i}(f).$$

De esto tenemos

$$\sum_{i=1}^{\ell} \frac{1}{k} \operatorname{vol}(R_i) \leq S(f,\mathcal{P}) - s(f,\mathcal{P}) < \frac{\varepsilon}{2k}.$$

Esto muestra que $\sum_{i=1}^{\ell} \operatorname{vol}(R_i) < \varepsilon/2$. Lo que finaliza la prueba del teorema.
Como consecuencia del teorema anterior tenemos el siguiente teorema.

Teorema 10.13 Sea \(R \subset \mathbb{R}^n \) un rectángulo compacto y sea \(f : R \to \mathbb{R} \) una función acotada e integrable sobre \(R \).

(a) Si \(f \) es nula, excepto sobre un conjunto de medida cero, entonces \(\int_R f = 0 \).

(b) Si \(f \) es no negativa y \(\int_R f = 0 \), entonces \(f \) es nula, excepto, sobre un conjunto de medida cero.

Demostración. Tenemos definidas las integrales superior e inferior de \(f \) sobre \(R \) como

\[
\int_R f = \inf \text{Sum}_{\text{sup}}(f) \quad \text{y} \quad \int_R f = \sup \text{Sum}_{\text{inf}}(f),
\]

respectivamente.

(a) Sea \(E \subset \mathbb{R}^n \) el conjunto de medida \(m \)-dimensional cero sobre el cual \(f \) es no cero. Sea \(P \) una partición de \(R \). Si \(R_{\alpha} \) es un subrectángulo determinado por \(P \), entonces \(R_{\alpha} \) no está contenido en \(E \), luego \(f \) se anula sobre un punto de \(R_{\alpha} \), de donde \(m_{R_{\alpha}}(f) \leq 0 \) y \(M_{R_{\alpha}}(f) \geq 0 \), por lo tanto \(s(f, P) \leq 0 \) y \(S(f, P) \geq 0 \). Como estas desigualdades valen para toda partición \(P \) de \(R \), se tiene que

\[
\int_R f \leq 0 \quad \text{y} \quad \int_R f \geq 0
\]

Como \(\int_R f \) existe, se debe tener que la integral inferior y la integral superior de \(f \) sobre \(R \) son iguales a la integral de \(f \) sobre \(R \), por lo tanto \(\int_R f = 0 \).

(b) Como \(f \) es integrable, el conjunto de discontinuidad de \(f \) tiene medida \(m \)-dimensional cero, por lo tanto podemos suponer que \(f \) es
continua, excepto en un conjunto de medida nula. Sea $x_0 \in R$ y su-
pongamos que f es continua en x_0 y que $f(x_0) > 0$. Sea $\varepsilon = f(x_0)$.
Como f es continua en x_0, existe $\delta > 0$ tal que $f(x) > \varepsilon/2$ para
$x \in R$ con $||x - x_0|| < \delta$.

Elijamos una partición P de R formada por rectángulos de lado δ. Si
R_0 es un subrectángulo determinado por P que contiene a x_0 entonces
$m_{R_0}(f) \geq \varepsilon/2$. Por otra parte, $m_{R_0}(f) \geq 0$ para todo rectángulo R_0.
Se sigue entonces que $s(f, P) = \sum_{R_0} m_{R_0}(f) \operatorname{vol}(R_0) \geq (\varepsilon/2) \operatorname{vol}(R_0)$.
Pero, $s(f, P) \leq \int_R f = 0$, lo cual es una contradicción, y obtenemos
que f es nula, excepto quizá, sobre un conjunto de medida cero. Esto
completa la prueba.

Sea $C \subset \mathbb{R}^m$. La función característica o indicatriz, $X_C : \mathbb{R}^m \rightarrow \mathbb{R}$,
es definida por

$$X_C(x) = \begin{cases}
1 & \text{si } x \in C \\
0 & \text{si } x \notin C.
\end{cases}$$

Si $C \subset \mathbb{R}^m$ es tal que existe un rectángulo compacto R, con $C \subset R$, y $f : R \rightarrow \mathbb{R}$ es una función acotada tal que $X_C f$ es integrable,
definimos $\int_C f$ como

$$\int_C f = \int_R f \cdot X_C.$$

Debemos tener condiciones para saber cuando $f \cdot X_C$ es integrable.
Tenemos ahora el siguiente teorema

Teorema 10.14 Sea $R \subset \mathbb{R}^m$ un rectángulo compacto y sea $C \subset R$.
Supongamos que el borde de C tiene medida cero entonces la función
característica $X_C : R \rightarrow \mathbb{R}$ es integrable.

Demostración. Si $x \in \text{int}(C)$ entonces existe un rectángulo abierto U , con $x \in U \subset C$. Luego $X_C(y) = 1$ para todo $y \in U$, y por lo tanto
continua en \(x \). Análogamente, si \(x \in \text{int}(\mathbb{R}^m - C) \), existe un rectángulo abierto \(U \) con \(x \in U \) y \(U \subset \mathbb{R}^m - C \), por lo tanto \(\chi_C(y) = 0 \) para todo \(y \in U \), luego \(\chi_C \) es continua en \(x \). Finalmente, si \(x \in \partial C \) entonces cada rectángulo abierto \(U \) con \(x \in U \) contiene un punto \(y_1 \in U \cap C \) y un punto \(y_2 \in U \cap (\mathbb{R}^m - C) \). Ahora, como \(\chi_C(y_1) = 1 \) y \(\chi_C(y_2) = 0 \), se tiene que \(\{ x \in \mathbb{R} : \chi_C \text{ no es continua en } x \} = \partial C \), y el resultado sigue del teorema anterior.

Definición 10.9 Un conjunto es medible Jordan si, su borde tiene medida \(m \)-dimensional cero. La integral \(\int_C 1 \) es llamado el contenido \(m \)-dimensional o volumen de \(C \).

Observemos que si \(C \subset \mathbb{R}^m \) es medible Jordan entonces \(\chi_C \) es integrable sobre \(C \).

Dar Ejemplos

10.4 Cálculo de Integrales

El problema de calcular integrales se resuelve, en cierta forma, usando el Teorema de Fubini, el cual reduce el problema de calcular una integral múltiple al cálculo iterativo de integrales de funciones de una variable.

Teorema 10.15 (Fubini) Sean \(A \subset \mathbb{R}^m \) y \(B \subset \mathbb{R}^n \) rectángulos compactos, y sea \(f : A \times B \to \mathbb{R} \) una función integrable. Para cada \(x \in A \), sea \(g_x : B \to \mathbb{R} \) definida por \(g_x(y) = f(x, y) \), y sean

\[
\mathcal{L}(x) = \int_B g_x = \int_B f(x, y) dy
\]

\[
\mathcal{U}(x) = \int_B g_x = \int_B f(x, y) dy
\]
Entonces las funciones \mathcal{L} y \mathcal{U} son integrables sobre A y

$$\int_{A \times B} f = \int_A \mathcal{L} = \int_A \left(\int_B f(x, y) \, dy \right) \, dx$$

$$\int_{A \times B} f = \int_A \mathcal{U} = \int_A \left(\int_B f(x, y) \, dy \right) \, dx$$

(las integrales del segundo miembro de las igualdades arriba son llamadas integrales iteradas de f).

Demostración. Sean \mathcal{P}_A y \mathcal{P}_B particiones de los rectángulos A y B, respectivamente. En $A \times B$ consideramos la partición $\mathcal{P} = \mathcal{P}_A \times \mathcal{P}_B$, la cual es formada por subrectángulos de la forma $R_\alpha = R_A \times R_B$, donde R_A es un subrectángulo de la partición \mathcal{P}_A y R_B es un subrectángulo de la partición \mathcal{P}_B. Tenemos que

$$s(f, \mathcal{P}) = \sum_{R_\alpha \in \mathcal{P}} m_{R_\alpha}(f) \, \text{vol}(R_\alpha)$$

$$= \sum_{R_A \times R_B} m_{R_A \times R_B}(f) \, \text{vol}(R_A \times R_B)$$

$$= \sum_{R_A} \left(\sum_{R_B} m_{R_A \times R_B}(f) \, \text{vol}(R_B) \right) \, \text{vol}(R_A).$$

Ahora, si $x \in R_A$ entonces $m_{R_A \times R_B}(f) \leq m_{R_B}(g_x)$. Luego, para cada $x \in R_A$ tenemos

$$\sum_{R_B} m_{R_A \times R_B}(f) \, \text{vol}(R_B) \leq \sum_{R_B} m_{R_B}(g_x) \, \text{vol}(R_B) \leq \int_{R_B} g_x = \mathcal{L}(x).$$

Por lo tanto,

$$\sum_{R_B} m_{R_A \times R_B}(f) \, \text{vol}(R_B) \, \text{vol}(R_A) \leq \sum_{R_B} m_{R_B}(g_x) \, \text{vol}(R_B) \, \text{vol}(R_A) \leq m_{R_A}(\mathcal{L}, \mathcal{P}_A).$$
de donde se obtiene que

\[s(f, \mathcal{P}) \leq \sum_{R_A} \left(\sum_{R_B} m_{R_A \times R_B}(f) \, \text{vol}(R_B) \right) \, \text{vol}(R_A) \leq s(\mathcal{L}, \mathcal{P}_A). \] (10.1)

De modo análogo se demuestra que \(S(\mathcal{U}, \mathcal{P}_A) \leq S(f, \mathcal{P}) \).

De lo anterior deducimos que

\[s(f, \mathcal{P}) \leq s(\mathcal{L}, \mathcal{P}) \leq S(\mathcal{L}, \mathcal{P}_A) \leq S(\mathcal{U}, \mathcal{P}_A) \leq s(f, \mathcal{P}). \]

Como \(f \) es integrable, se tiene que

\[\sup_{\mathcal{P}} \{ s(f, \mathcal{P}) \} = \inf_{\mathcal{P}} \{ S(f, \mathcal{P}) \} = \int_{A \times B} f, \]

donde tanto el supremo como el ínfimo son tomados sobre todas las particiones \(\mathcal{P} \) de \(A \times B \). Por lo tanto se tiene

\[\sup \{ s(\mathcal{L}, \mathcal{P}_A) \} = \inf \{ S(\mathcal{L}, \mathcal{P}_A) \} = \int_{A \times B} f, \]

es decir, \(\mathcal{L} \) es integrable y \(\int_A \mathcal{L} = \int_{A \times B} f \). Finalmente, para \(\mathcal{U} \), considerando las desigualdades

\[s(f, \mathcal{P}) \leq s(\mathcal{L}, \mathcal{P}_A) \leq s(\mathcal{U}, \mathcal{P}_A) \leq S(\mathcal{U}, \mathcal{P}_A) \leq S(f, \mathcal{P}) \]

se obtiene el resultado de modo análogo al caso anterior.

Observaciones.

1. De modo análogo se pruebe que

\[\int_{A \times B} f = \int_B \left(\int_A f(x, y) \, dx \right) \, dy = \int_B \left(\int_A f(x, y) \, dx \right) \, dy \]

está son las integrales iteradas de \(f \) en orden inversa a las que aparecen en el enunciado del Teorema de Fubini.
2. Si \(g_x \) es integrable entonces se tiene (de inmediato) que \(\int_{A \times B} f = \int_A (\int_B f(x,y)dy) \, dx \), esto ocurre, por ejemplo, cuando \(f \) es continua.

3. Lo usual es que \(g_x \) sea integrable, salvo para un conjunto finito de puntos de \(A \), en este caso la función \(L(x) = \int_B f(x,y)dy \) está bien definida, salvo un número finito de puntos. Por otra parte, si el valor de \(L \) es alterado en un número finito de puntos el valor de \(\int_A L \) no se altera, por lo tanto podemos como antes escribir \(\int_{A \times B} f = \int_A (\int_B f(x,y)dy) \, dx \), siempre y cuando \(\int_B f(x,y)dy \) se defina de modo arbitrario, por ejemplo, asignándole el valor 0 cuando no exista.

4. Existen casos en los cuales no podemos proceder como en el item 3, anterior y debemos aplicar el Teorema de Fubini tal y cual fue establecido arriba. Por ejemplo, consideremos la función \(f[0,1] \times [0,1] \to \mathbb{R} \) definida por

\[
 f(x,y) = \begin{cases}
 1 & \text{si } x \text{ es irracional} \\
 1 & \text{si } x \text{ es racional e } y \text{ es irracional} \\
 1 - 1/q & \text{si } x = p/q \text{ es irreducible e } y \text{ es racional}
 \end{cases}
\]

Se tiene que \(f \) es integrable sobre \([0,1] \times [0,1]\) y que \(\int_{[0,1] \times [0,1]} f = 1 \). Por otra parte, tenemos que \(\int_{[0,1]} f(x,y)dy = 1 \) si \(x \) es racional, y no existe cuando \(x \) es racional. Por lo tanto \(h(x) = \int_{[0,1]} f(x,y)dy \) no es integrable, aún cuando la definamos como siendo igual a 0 cuando la integral no existe. En consecuencia, debemos aplicar el Teorema de Fubini tal como fue establecido.
5. Sea \(f : [0, 1] \times [0, 1] \to \mathbb{R} \) definida por

\[
f(x, y) = \begin{cases}
\frac{1}{2} & \text{si } y \text{ es racional} \\
x & \text{si } y \text{ es irracional}.
\end{cases}
\]

Entonces \(f_0^1 (f_y^1 fdy)dx = \frac{1}{2} \), pero \(f_0^1 (f_y^1 fdy)dy \) no existe.

En efecto, para \(y \) racional se tiene

\[
\int_0^1 fdy = \int_0^1 \frac{1}{2} dy = \frac{1}{2}
\]

y para \(y \) irracional

\[
\int_0^1 fdy = \int_0^1 xdy = \frac{1}{2}.
\]

Por lo tanto,

\[
\int_0^1 \left(\int_0^1 fdy \right) dx = \int_0^1 \frac{1}{2} dx = \frac{1}{2}.
\]

Ahora, procediendo como para funciones de una variable, podemos mostrar, fácilmente, que \(f_0^1 fdy \) no existe, por lo tanto no existe \(f_0^1 (f_y^1 fdy)dx \). Por otra parte, \(\int_R f \) no existe, donde \(R = [0, 1] \times [0, 1] \).

6. Si \(C \subset A \times B \), podemos utilizar el Teorema de Fubini para calcular \(\int_C f \), la cual recordemos es definida como siendo \(\int_A f \chi_C \).

En general, si \(C \subset A \times B \) la mayor dificultad para deducir expresiones para \(\int_C f \) es determinar \(C \cap (\{x\} \times B) \) para \(x \in A \) o bien \(C \cap (A \times \{y\}) \) para \(y \in B \). Por ejemplo, si es más fácil determinar esta última intersección, usamos la integral iterada

\[
\int_C f = \int_B \left(\int_A f(x, y) \chi_C(x, y) dx \right) dy.
\]
Sea $U \subset \mathbb{R}^m$ es un conjunto abierto y acotado, entonces existe un cubrimiento abierto \mathcal{U} de U tal que cada elemento $O \in \mathcal{U}$ está contenido en U y es medible Jordan, es decir, ∂O tiene medida m-dimensional cero, por ejemplo, podemos tomar $\mathcal{U} = \{ R \subset U : R$ rectángulo abierto $\}$. Sea \mathcal{U} uno de tales cubrimientos y sea $\Phi = \{ \varphi_i : i \in \Lambda \}$ una partición de la unidad subordinada a \mathcal{U}. Si $f : U \to \mathbb{R}$ es tal que para cada $\varphi \in \Phi$, la función $\varphi \cdot f$ es integrable. (note que $(\varphi \cdot f)(x) = 0$ para $x \notin \text{sop}(f)$), definimos

$$\int_{U} f = \sum_{\varphi \in \Phi} \int_{U} \varphi \cdot f.$$

Tenemos que demostrar que $\int_{U} f$ está bien definida (esto es, la suma del lado derecho en la igualdad arriba es convergente) y que no depende de la partición de la unidad usada para definirla.

Teorema 10.16 Sea $U \subset \mathbb{R}^m$ un conjunto acotado. Sean \mathcal{U} un cubrimiento abierto de U como arriba, y Φ una partición de la unidad subordinada a \mathcal{U}. Si $f : U \to \mathbb{R}$ es una función acotada y el conjunto de las discontinuidades de f tiene medida cero. Entonces

$$\sum_{\varphi \in \Phi} \int_{U} \varphi \cdot f$$

es convergente. Además, si \mathcal{V} es otro cubrimiento abierto de U y Ψ es una partición de la unidad subordinada a \mathcal{V} entonces

$$\sum_{\varphi \in \Phi} \int_{U} \varphi \cdot f = \sum_{\psi \in \Psi} \int_{U} \psi \cdot f.$$

Demostración. Como $U \subset \mathbb{R}^m$ es acotado, existe un rectángulo compacto $R \subset \mathbb{R}^m$ que contiene a U y como f es acotada, existe una constante $M > 0$ tal que $|f(x)| \leq M$ para todo $x \in U$. Luego,
\[
\int_U |\varphi f| \leq \int_U M |\varphi|.
\]
Ahora, para cualquier colección finita \(\mathcal{F} \subset \Phi \), se tiene
\[
\sum_{\varphi \in \mathcal{F}} \int_U |\varphi f| \leq \sum_{\varphi \in \mathcal{F}} \int_U |\varphi f| \leq M \sum_{\varphi \in \mathcal{F}} \int_U |\varphi| = M \int_U \sum_{\varphi \in \mathcal{F}} \varphi.
\]
En \(\mathbb{R} \) se tiene que \(\sum_{\varphi \in \mathcal{F}} \varphi \leq \sum_{\varphi \in \Phi} \varphi = 1 \). Luego,
\[
\sum_{\varphi \in \mathcal{F}} \int_U |\varphi f| \leq \sum_{\varphi \in \mathcal{F}} M \int_U \varphi = M \int_U \sum_{\varphi \in \mathcal{F}} \varphi \leq M \int_U 1 \leq M \text{vol}(\mathbb{R}).
\]
Por lo tanto \(\sum_{\varphi \in \Phi} \int_U \varphi f \) es convergente, luego \(\sum_{\varphi \in \Phi} \int_U \varphi f \) es convergente.

Ahora, si \(\Psi = \{\psi_j : j \in \Gamma\} \) es otra partición de la unidad subordinada a \(\mathcal{V} \), entonces la colección de todas las funciones \(\varphi \cdot \psi \), con \(\varphi \in \Phi \) y \(\psi \in \Psi \) también es una partición de la unidad para \(U \). Tenemos que, \(\varphi \cdot f = 0 \), excepto sobre un conjunto compacto \(C \), y sólo un número finito de funciones \(\psi \)'s son no cero sobre \(C \). Podemos escribir,
\[
\sum_{\varphi \in \Phi} \int_U \varphi f = \sum_{\varphi \in \Phi} \int_U \left(\sum_{\psi \in \Psi} \psi \varphi f \right)
= \sum_{\varphi \in \Phi, \psi \in \Psi} \int_U (\psi \varphi f)
= \sum_{\psi \in \Psi} \int_U \left(\sum_{\varphi \in \Phi} \psi \varphi f \right)
= \sum_{\psi \in \Psi} \int_U \psi f.
\]
Esto completa la demostración del Teorema.

Si \(U \subset \mathbb{R}^n \) es medible Jordan y \(f : U \rightarrow \mathbb{R} \) es una función acotada, tenemos dos definiciones para \(\int_U f \). Afiramos que ellas coinciden, es decir, \(\int_U f = \int_R f \cdot \xi_U \) y \(\int_U f = \sum_{\varphi \in \Phi} \int \varphi f \).
En efecto, sea \(\varepsilon > 0 \) es dado, entonces existe un conjunto compacto \(C \subset U \) tal que \(\int_{U-C} 1 < \varepsilon \) (pruebe esto). Además, sólo un número finito de \(\varphi \in \Phi \) son distinto de cero en \(C \). Sea \(\mathcal{F} \subset \Phi \) una colección finita que contiene a las \(\varphi \)'s que son no cero en \(C \) entonces

\[
\left| \int_U f - \sum_{\varphi \in \mathcal{F}} \int_U \varphi \cdot f \right| \leq \int_U |f| \left| 1 - \sum_{\varphi \in \mathcal{F}} \varphi \right|
\]
\[
\leq M \int_U \left(1 - \sum_{\varphi \in \mathcal{F}} \varphi \right)
\]
\[
= M \int_U \sum_{\varphi \in \Phi - \mathcal{F}} \varphi
\]
\[
\leq M \int_{U-C} 1 < M \varepsilon .
\]

Por lo tanto \(\sum_{\varphi \in \mathcal{F}} \int_U \varphi f = \int_{U} f \). Lo que completa la prueba de la afirmación.

10.5 Teorema del Cambio de Variable

Sean \(I = [a, b] \subset \mathbb{R} \) y \(g : I \to \mathbb{R} \) una función integrable de clase \(C^1 \), con \(g'(x) \neq 0 \) para todo \(x \in]a, b[\) entonces el conjunto \(J = g(I) \) es un intervalo compacto con puntos extremos \(g(a) \) y \(g(b) \). Si \(f : J \to \mathbb{R} \) es una función integrable, entonces se tiene que

\[
\int_J f = \int_a^b (f \circ g)|g'|.
\]

Este es el Teorema del Cambio de Variable en el cálculo integral de funciones a valores reales de variable real. Para el caso de funciones reales de varias variables, tenemos.
Teorema 10.17 (del Cambio de Variable). Sea $U \subset \mathbb{R}^n$ un conjunto abierto y acotado, y sea $g : U \to \mathbb{R}^n$ una función inyectiva de clase C^1, tal que $\det(Dg(x)) \neq 0$ para todo $x \in U$ (esto es, g es un difeomorfismo del abierto U sobre el abierto $V = g(U)$). Si $f : g(U) \to \mathbb{R}$ es una función integrable entonces

$$\int_{g(U)} f = \int_U (f \circ g) |\det(Dg)|.$$

La demostración la haremos a través de varios lemas.

Lema 10.2 En las hipótesis del Teorema anterior, supongamos que existe un cubrimiento abierto \mathcal{U} de U tal que para cada $O \in \mathcal{U}$ y cada f integrable se tiene

$$\int_{g(O)} f = \int_O (f \circ g) |\det Dg|.$$

Entonces el Teorema vale para U.

Demostración. La colección $g(\mathcal{U}) = \{g(A) : A \in \mathcal{U}\}$ es un cubrimiento abierto de $g(U)$. Sea Φ una partición de la unidad subordinada al cubrimiento $g(\mathcal{U})$. Si $\varphi = 0$ fuera de $g(A)$ entonces como g es inyectiva se tiene que $(\varphi \cdot f) \circ g = 0$ fuera de A, luego la colección $\{\varphi \circ g : \varphi \in \Phi\}$ es una partición de la unidad subordinada a \mathcal{U}. Por lo tanto,

$$\int_{g(A)} \varphi \cdot f = \int_A ((\varphi \cdot f) \circ g) |\det Dg|$$

e puede ser escrita como

$$\int_{g(U)} \varphi \cdot f = \int_U ((\varphi \cdot f) \circ g) |\det Dg|.$$

Luego

$$\int_{g(U)} f = \sum_{\varphi \in \Phi} \int_{g(U)} \varphi \cdot f$$
Cálculo Integral

\[\sum_{\varphi \in \Phi} \int_U ((\varphi \cdot f) \circ g) | \det Dg| \]

\[\sum_{\varphi \in \Phi} \int_U (\varphi \circ g) \cdot (f \circ g) | \det Dg| \]

\[\int_U \sum_{\varphi \in \Phi} (\varphi \circ g) \cdot (f \circ g) | \det Dg| \]

\[\int_U (f \circ g) | \det Dg| . \]

Nota. En este lema es la única parte de la demostración del Teorema donde se usa que \(g \) es inyectiva sobre todo \(U \).

Lema 10.3 *Basta probar el Teorema para \(f = 1 \).*

Demostración. Es claro que si el Teorema vale para \(f = 1 \), entonces vale para toda función constante. Sea \(R \subset g(U) \) un rectángulo y sea \(\mathcal{P} \) una partición de \(R \). Para cada subrectángulo \(R_\alpha \) en \(\mathcal{P} \), sea \(f_{R_\alpha}(x) = m_{R_\alpha}(f) \) (función constante). Entonces

\[s(f, \mathcal{P}) = \sum_{R_\alpha} m_{R_\alpha}(f) \text{vol}(R_\alpha) \]

\[= \sum_{R_\alpha} \int_{\text{int}(R_\alpha)} f_{R_\alpha} \]

\[= \sum_{R_\alpha} \int_{g^{-1}(\text{int}(R_\alpha))} (f_{R_\alpha} \circ g) | \det Dg| \]

\[\leq \sum_{R_\alpha} \int_{g^{-1}(\text{int}(R_\alpha))} (f \circ g) | \det Dg| \]
≤ \int_{g^{-1}(R_a)} (f \circ g)|\det Dg|.

Como \(\int_R f = \sup \{s(f, P)\} \), se tiene que \(\int_R f \leq \int_{g^{-1}(R)} (f \circ g)|\det Dg| \).

Análogamente, si \(F_{R_a}(x) = M_{R_a}(f) \) se prueba que

\[\int_R f \geq \int_{g^{-1}(R)} (f \circ g)|\det Dg| . \]

Por lo tanto,

\[\int_R f = \int_{g^{-1}(R)} (f \circ g)|\det Dg| . \]

Lo que completa la prueba del lema.

Tomando \(g^{-1} \) en el lema anterior, se tiene que el Teorema se deduce suponiendo que

\[\int_V f = \int_{g^{-1}(V)} (f \circ g)|\det Dg| , \]

donde \(V \) está en el cubrimiento abierto de \(g(U) \).

Lema 10.4 Si el Teorema vale para \(g : U \to \mathbb{R}^n \) y para \(h : V \to \mathbb{R}^n \) donde \(g(U) \subset V \) entonces el Teorema vale para \(h \circ g \).

Demostración. Tenemos que

\[\int_{h \circ g(U)} f = \int_{h(g(U))} f \]

\[= \int_{g(U)} (f \circ h)|\det Dh| \]

\[= \int_U ((f \circ h) \circ g)(|\det Dh| \circ g) \cdot |\det Dg| \]

\[= \int_U (f \circ (h \circ g))|\det D(h \circ g)| . \]

Que es lo que se deseaba probar.
Lema 10.5 El Teorema vale si g es una transformación lineal.

Demostración. Desde los Lemas 1 y 2, es suficiente probar este lema para cada rectángulo abierto R, y en este caso se tiene

$$\int_{g(R)} 1 = \int_R |\det Dg| = \int_R |\det g|.$$

Lema 10.6 Podemos suponer que $Dg(x) = I$, para cada $x \in U$.

Demostración. Si $T = Dg(x)$ entonces $D(T^{-1} \circ g)(x) = I$. Como el Teorema vale para T, si vale para $T^{-1} \circ g$ entonces también vale para g.

Demostración del Teorema. La demostración la haremos por inducción sobre la dimensión n de \mathbb{R}^n.

Primero el Teorema vale para $n = 1$. Esto fue probado en el cálculo de una variable.

Supongamos ahora que el Teorema vale para $n - 1$.

Para cada $x \in U$ basta encontrar un conjunto abierto $V \subset U$ con $x \in V$ para el cual el Teorema vale. Además, por el Lema 5.7 podemos suponer que $Dg(x) = I$, donde $g = (g_1, \ldots, g_{n-1})$.

Definamos $h : U \to \mathbb{R}^n$ por

$$h(x_1, \ldots, x_n) = (g_1(x_1, \ldots, x_n), \ldots, g_{n-1}(x_1, \ldots, x_n), x_n).$$

Tenemos que $Dh(x_1, \ldots, x_n) = 1$. Luego por el Teorema de la Función Inversa, existe un abierto $U_1 \subset U$ con h/U_1 inyectiva y $\det(Dh(y)) \neq 0$ para todo $y \in U_1$. Sea $k : h(U_1) \to \mathbb{R}^n$ definida por $k(x_1, \ldots, x_n) = (x_1, \ldots, x_{n-1}, g_n(h^{-1}(x_1, \ldots, x_n)))$, entonces es inmediato ver que $g = k \circ h$, esto es, g es la composición de dos funciones, cada una de las...
cual es cambia menos de n coordenadas. Tenemos,

$$D(g_n \circ h^{-1})(h(x_0)) = Dg_n(h^{-1}(h(x_0))) \circ (Dh(x_0))^{-1}$$
$$= Dg_n(x_0) \circ I = Dg_n(x_0).$$

Luego, $\frac{\partial}{\partial x_n} (g_n \circ h^{-1})(h(x_0)) = \frac{\partial g_n}{\partial x_n}(x_0)$, de donde $Dk(h(x_0)) = I$. Por lo tanto, en un conjunto abierto V con $h(x_0) \in V \subset h(U_1)$, la función k es inyectiva y det $Dk(x) \neq 0$. Pongamos $W = k^{-1}(V)$. Entonces se tiene que $g = k \circ h$, donde $h : W \to \mathbb{R}^n$, $k : V \to \mathbb{R}^n$, y $h(W) \subset V$. Luego, basta probar el Teorema para h y k. Haremos la demostración para h, para k es fácil y se deja al lector.

Demostración para h. Sea $R \subset W$ un rectángulo de la forma $R_1 \times [a_n, b_n]$, donde $R_1 \subset \mathbb{R}^{n-1}$ es un rectángulo. Por el Teorema de Fubini,

$$\int_{h(R_1)} 1 = \int_{[a_n, b_n]} \left(\int_{h(R_1 \times \{x_n\})} 1 \, dx_1 \cdots dx_{n-1} \right) dx_n.$$

Sea $h_{x_n} : R_1 \to \mathbb{R}^{n-1}$ la función definida por $h_{x_n}(x_1, \ldots, x_{n-1}) = (g_1(x_1, \ldots, x_n), \ldots, g_{n-1}(x_1, \ldots, x_n))$. Tenemos que h_{x_n} es inyectiva y det $Dh_{x_n}(x_1, \ldots, x_{n-1}) = \det Dh(x_1, \ldots, x_n) \neq 0$. Además,

$$\int_{h(R_1 \times \{x_n\})} 1 \, dx_1 \cdots dx_{n-1} = \int_{h_{x_n}(R_1)} 1 \, dx_1 \cdots dx_{n-1}.$$
Ahora, como el Teorema vale para \(n-1 \), tenemos

\[
\int_{h(R)} 1 = \int_{[a_n,b_n]} \left(\int_{h_{x_n}(R_1)} 1 \, dx_1 \cdots dx_{n-1} \right) \, dx_n
\]

\[
= \int_{[a_n,b_n]} \left(\int_{R_1} | \det Dh_{x_n}(x_1,\ldots,x_{n-1}) | \, dx_1 \cdots dx_{n-1} \right) \, dx_n
\]

\[
= \int_{[a_n,b_n]} \left(\int_{R_1} | \det Dh(x_1,\ldots,x_n) | \, dx_1 \cdots dx_{n-1} \right) \, dx_n
\]

\[
= \int_R | \det Dh |.
\]

Esto completa la prueba del Teorema.

Nota. La condición \(\det(Dg(x)) \neq 0 \) puede ser eliminada, esto es consecuencia del siguiente Teorema.

Teorema 10.18 (Sard) Sea \(g : U \subset \mathbb{R}^n \to \mathbb{R}^n \) una aplicación diferenciable de clase \(C^1 \), con \(U \) abierto, y sea \(S = \{ x \in U : \det Dg(x) = 0 \} \). Entonces \(g(S) \) tiene medida cero.

10.6 Ejercicios

1. Sea \(U \subset \mathbb{R}^n \) un conjunto medible Jordan y sea \(\varepsilon > 0 \) dado. Pruebe que existe un conjunto compacto \(C \subset U \) tal que \(\int_{U-C} 1 < \varepsilon \).

2. Sea \(f : \mathbb{R} \to \mathbb{R} \) definida por

\[
f(x) = \begin{cases}
e^{-1/x^2} & \text{si } x > 0 \\ 0 & \text{si } x \leq 0. \end{cases}
\]
(a) Pruebe que f es C^∞.

(b) Defina $g : \mathbb{R} \to \mathbb{R}$ por $g(x) = f(x - a)f(b - x)$. Pruebe que g es C^∞, positiva sobre el intervalo $]a, b[$, y cero fuera de ese intervalo.

(c) Defina $h : \mathbb{R} \to \mathbb{R}$ por

$$h(x) = \frac{\int_{-\infty}^{x} g(t)dt}{\int_{-\infty}^{\infty} g(u)du}.$$

Pruebe que h es C^∞ y que $h(x) = 0$ para $x < a$, $h(x) = 1$ para $x > b$, y $0 < h(x) < 1$ para $x \in]a, b[.$

(d) Use esta función h para construir una función cototo $\psi : \mathbb{R}^n \to \mathbb{R}$.

3. Calcular $\int_{a}^{b} r(t) dt$, donde

(a) $r(t) = (e^t \cos(t), e^t \sin(t))$, donde $a = 0$ y $b = 2$.

(b) $r(t) = (a(\sin h(t) - t), a(\cosh(t) - 1))$, $0 \leq t \leq T$, y $a > 0$.

(c) $r(t) = (\frac{c^2}{a} \cos^3(t), \frac{c^2}{b} \sin^3(t))$, donde $0 \leq t \leq 2\pi$, $c^2 = a^2 - b^2$, y $0 < a < b$

4. Sea $f : [a, b] \to \mathbb{R}$ una función de clase C^1, y sea $r(t) = (t, f(t))$. Pruebe que

$$\int_{a}^{b} \|r'(t)\| dt = \int_{a}^{b} \sqrt{1 + (f'(t))^2} dt.$$

5. Si una curva tiene ecuación $y^2 = x^3$. Encuentre la longitud del arco que une $(1, -1)$ a $(1, 1)$.

6. Si una curva tiene una ecuación de la forma $r = f(\theta)$, en coordenadas polares, y si f es de clase C^1 en un intervalo $[a, b]$. Probar que la longitud de la gráfica de f entre $\theta = a$ y $\theta = b$ está dada por

$$\int_{a}^{b} \sqrt{(f(\theta))^2 + (f'(\theta))^2} d\theta.$$
7. Sea \(r(\theta) = (a \sin(\theta), b \cos(\theta)) \), donde \(0 < b < a \). Probar que la gráfica de \(r \) es una elipse, y su longitud está dada por \(L = 4a \int_{0}^{\pi/2} \sqrt{1 - k^2 \sin^2(\theta)} \, d\theta \), donde \(k = \sqrt{a^2 - b^2} / a \) (\(k \) es llamada excentricidad de la elipse.)

8. Si \(0 < b < 4a \), sea \(r(t) = (a(t - \sin(t)), a(1 - \cos(t)), b \sin(t/2)) \).
Probar que la integral de la trayectoria descrita desde \(t = 0 \) hasta \(t = 2\pi \) por \(r(t) \) es \(8aE(k) \), donde \(E(k) \) es una integral como la dada en el ejercicio anterior, con \(k = 1 - \frac{b^2}{16a^2} \).

Una integral \(E(k) \) como las anteriores es llamada Integral Elíptica.

9. Sea \(f : [0, 1] \times [0, 1] \to \mathbb{R} \) dada por

\[
 f(x, y) = \begin{cases}
 0 & \text{si } 0 \leq x \leq \frac{1}{2} \\
 1 & \text{si } \frac{1}{2} \leq x \leq 1
 \end{cases}
\]

Probar que \(f \) es integrable y que \(\int_{[0,1] \times [0,1]} f = \frac{1}{2} \).

10. Sea \(f : A \to \mathbb{R} \) integrable, donde \(A \subset \mathbb{R}^n \) un rectángulo compacto y sea \(g = f \), excepto en un conjunto de medida \(n \)-dimensional nula. Probar que \(g \) es integrable y que \(\int_A f = \int_A g \).

11. Cambie el orden de integración en la integral

\[
 \int_{-2}^{2} \int_{y^2-1}^{3} f(x, y) \, dx \, dy.
\]

12. Sean \(f, g : [a, b] \to \mathbb{R} \) funciones integrables. Pruebe que

\[
 \left| \int_{a}^{b} f \cdot g \right| \leq \left(\int_{a}^{b} f \right)^{1/2} \left(\int_{a}^{b} g \right)^{1/2}
\]

¿En qué caso vale la igualdad?
13. Encuentre el área encerrada por la curva \(x^2 - xy + y^2 = 1 \).

14. Calcule la integral \(\int_0^{1/3} \int_{x/2}^{2x} (x + y)dydx \) aplicando el cambio de variables \(u = 2x - y, \ y = -x + 2y \).

15. Sean \(A \subset \mathbb{R}^n \) un rectángulo y \(f, g : A \to \mathbb{R} \) integrables.

 (a) Para cada partición \(P \) de \(A \) y cada subrectángulo \(S \) de \(P \).

 Probar que \(m_S(f) + m_S(g) \leq m_S(f + g) \) y \(M_S(f + g) \leq M_S(f) + M_S(g) \) y por lo tanto \(s(f, P) + s(g, P) \leq s(f + g, P) \) y \(S(f + g, P) \leq S(f, P) + S(g, P) \).

 (b) Probar que \(f + g \) es integrable y que \(\int_A f + g = \int_A f + \int_A g \).

 (c) Para cada constante \(c \in \mathbb{R} \). Probar que \(\int_A cf = c \int_A f \).

16. Sean \(A \subset \mathbb{R}^n \) rectángulo compacto, y sea \(f : A \to \mathbb{R} \) y \(P \) una partición de \(A \). Probar que \(f \) es integrable si, y sólo si, para cada subrectángulo \(S \) de \(P \) la función \(f/S \) es integrable, y en este caso \(\int_A f = \sum_{S \in P} \int_S f/S \).

17. Sea \(A \subset \mathbb{R}^n \) un rectángulo y sean \(f, g : A \to \mathbb{R} \) integrables con \(f \leq g \). Probar que \(\int_A f \leq \int_A g \).

18. Sea \(A \subset \mathbb{R}^n \) un rectángulo, y \(f : A \to \mathbb{R} \) integrable. Probar que \(\left| \int_A f \right| \leq \int_A |f| \).

19. Si \(a_i < b_i \), para \(i = 1, \ldots, n \). Probar que \([a_1, b_1] \times \cdots \times [a_n, b_n] \) no tiene contenido cero.

20.
(a) Probar que un conjunto no acotado no puede tener contenido cero.

(b) Dar un ejemplo de un conjunto cerrado de medida cero que no tenga contenido cero.

21. Pruebe que la frontera de un conjunto de contenido cero tiene contenido cero.

22. Si \(A \subset \mathbb{R}^n \) tiene medida cero. Construya ejemplos donde \(\overline{A} \) y \(\partial A \) no tienen medida cero.

23. Sea \(f : [a, b] \to \mathbb{R} \) una aplicación continua. Pruebe que \(\text{graf}(f) = \{(x, f(x)) : x \in [a, b]\} \) tiene medida cero.

24. Sea \(U \subset \mathbb{R}^2 \) un conjunto abierto y sea \(f : U \to \mathbb{R} \) una aplicación de clase \(C^2 \). Sea \(Q \) un rectángulo contenido en \(U \).

Use el Teorema de Fubini y el Teorema Fundamental del Cálculo para mostrar que

\[
\int_Q \frac{\partial^2 f}{\partial y \partial x} = \int_Q \frac{\partial^2 f}{\partial x \partial y}.
\]

25. Sean \(f, g : S \to \mathbb{R} \). Suponga que \(f \) y \(g \) son integrables sobre \(S \).

a) Muestre que si \(f = g \) excepto sobre un conjunto de medida nula entonces \(\int_S f = \int_S g \).

b) Si \(f(x) \leq g(x) \) para todo \(x \in S \) y \(\int_S f = \int_S g \). Pruebe que \(f \) y \(g \) coinciden excepto sobre un conjunto de medida nula.

26. Sea \(\Omega \) la región en el primer cuadrante acotada por las parábolas \(y = x^2 \) e \(y = 3x^2 \) y por las hipérbolas \(xy = 2 \) y \(xy = 4 \). Haga el
siguiente cambio de variable

\[
\begin{align*}
x & = u^{-1/3}v^{1/3} \\
y & = u^{1/3}v^{2/3}
\end{align*}
\]

y calcule la integral \(\int_{\Omega} y^2 x^{-1} dxdy \).

27. Sea \(R \) la región del plano acotada por las parábolas \(y = 2x^2 \), \(y = 4x^2 \), \(x = y^2 \), \(x = 3y^2 \). Use el cambio de variable \(x = u^{2/3}v^{1/3} \), \(y = u^{1/3}v^{2/3} \) para calcular la integral

\[
\int_{R} xydxdy.
\]

28. Calcule \(\int_{E} x^2 y^2 + 2y^4 z dxdydz \), donde \(E = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \leq 4, \quad 0 \leq z \leq 1\} \)

29. Calcule \(\int_{E} \sqrt{x^2 + y^2} \exp(-(x^2 + y^2 + z^2))dV \), donde \(E = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + zr \leq 1\} \).

30. Sea \(R \) la región acotada por las rectas \(x + y = 1 \), \(x + y = -1 \), \(x - y = -1 \). Considere la transformación \(u = x + y \), \(v = x - y \), y calcule \(\int_{R} x^2 + 2xy dy dx \).

31. Sea \(E = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 9, \quad 0 \leq z \leq 3\} \). Calcule \(\int_{E} \sqrt{x^2 + y^2 + z^2} dxdydz \) y \(\int_{E} \frac{1}{\sqrt{x^2 + y^2 + z^2}} dxdydz \).

32. Calcule \(\int_{R} xydxdy \), donde \(R = [0, 1] \times [0, 1] \)

33. Calcule \(\int_{R} \cos(x + y)dxdy \), donde \(R = [0, \pi] \times [0, \pi] \).

34. Sea \(R = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1\} \). Calcule \(\int_{R} x^2 dA \).
35. Sea \(R = \{(x, y) \in \mathbb{R}^2 : x^2+y^2 \leq a^2\} \). Calcule \(\int_R \ln(x^2+y^2)\,dx\,dy \) y \(\int_R \frac{xy}{\sqrt{x^2+y^2}}\,dx\,dy \).

36. Sea \(R = [0, 1] \times [0, 1] \times [0, 1] \). Calcule las integrales \(\int_R xyz\,dx\,dy\,dz \) y \(\int_R xyz\,\text{sen}(x^2+y^2+z^2)\,dx\,dy\,dz \).

37. Sea \(R = \{(x, y, z) \in \mathbb{R}^3 : x^2+y^2+z^2 \leq 1, x \geq 0, y \geq 0, z \geq 0\} \). Calcule \(\int_R xyz\,dV \).

38. Sea \(T \) el tetraedro con vértices \((0,0,0), (1,0,0), (0,1,0), (0,0,1)\). Sea \(f \) una función continua sobre el intervalo \([0,1]\). Suponga que \(\int_0^1 u^2 f(u)\,du = 3 \). Calcule \(\int_T (x+y+z)\,dx\,dy\,dz \).

39. Calcule la integral \(\int_0^1 \int_0^{2x} x+y\,dy\,dx \) usando el cambio de variable \(u = 2x - y, \ v = -x + 2y \).

40. Sea \(A \subset \mathbb{R}^n \) y \(B \subset \mathbb{R}^m \) rectángulos compactos. Sean \(Q = A \times B \) y \(f : Q \to \mathbb{R} \) una aplicación acotada. Pruebe que si \(\int_Q f \) existe entonces \(\int_B \int_{B(1)} f(x,y) \) existe para \(x \in A - D \), donde \(D \) es un conjunto de medida nula en \(\mathbb{R}^n \).

41. Sean \(S_1, S_2 \subset \mathbb{R}^n \) conjuntos acotados. Sea \(f : S_1 \cup S_2 \to \mathbb{R} \) una aplicación acotada. Pruebe que si \(f \) es integrable sobre \(S_1 \) y sobre \(S_2 \) entonces \(f \) es integrable sobre \(S_1 - S_2 \), y
\[\int_{S_1 - S_2} f = \int_{S_1} f - \int_{S_2} f. \]
42. Sea $S \subset \mathbb{R}^n$ un conjunto acotado y sea $f : S \rightarrow \mathbb{R}^n$ una aplicación continua. Sea $A = \text{int}(S)$. Dar ejemplos donde $\int_A f$ existe y $\int_S f$ no existe.

43. Si $f, g : A \rightarrow \mathbb{R}$ son integrables. Pruebe que fg y f^2 son integrales.

44. Pruebe que si C tiene contenido cero, entonces $C \subset A$ para algún rectángulo compacto A, y C es medible Jordan. Además, $\int_A \chi_C = 0$.

45. Dar ejemplos de conjuntos acotados C, de medida cero tal que $\int_A \chi_C$ no existe.

46. Si C es un conjunto acotado de medida cero y $\int_A \chi_C$ existe, pruebe que $\int_A \chi_C = 0$.

47. Si $f : A \rightarrow \mathbb{R}$ es no negativa y $\int_A f = 0$. Pruebe que $\{x \in A : f(x) \neq 0\}$ tiene medida cero.

48. Sea $A \subset \mathbb{R}^n$ un conjunto medible Jordan, y sea $\varepsilon > 0$. Pruebe que existe un conjunto compacto, medible Jordan $C \subset A$, tal que $\int_A \chi_{A-C} = 0$.

49. Calcular $\int_W f(x, y, z) dx dy dz$ para las funciones f y regiones W que se indican

(a) $f(x, y, z) = z e^{x+y}$, $W = [0, 1] \times [0, 1] \times [0, 1]$;

(b) $f(x, y, z) = 2x + 3y + z$, $W = [1, 2] \times [-1, 1] \times [0, 1]$;

(c) $f(x, y, z) = e^{-xy}$, $W = [0, 1] \times [0, 1] \times [0, 1]$;
(d) \(f(x, y, z) = \frac{z^2 y - x^2 - x^4}{1 + x^2} \), \(W = [0, 1] \times [0, 1] \times [0, 1] \).

50. Hallar \(\int_D yz dxdydz \), si \(D \) es la región limitada por los planos coordenados y los planos \(x + y = 1 \), \(z = 4 \).

51. Sea \(f : [a, b] \rightarrow \mathbb{R} \) una función integrable y no negativa, y sea
 \(A_f = \{(x, y) : a \leq x \leq b, \ 0 \leq y \leq f(x)\} \). Pruebe que \(A_f \) es medible Jordan y su área es \(\int_a^b f \).

52. Sea \(f : [a, b] \times [a, b] \rightarrow \mathbb{R} \) una función integrable. Pruebe que
 \[
 \int_a^b \int_a^b f(x, y) \, dx \, dy = \int_a^b \int_x^b f(x, y) \, dy \, dx .
 \]

53. Use el Teorema de Fubini para demostrar que \(\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial y \partial x}(x, y) \), si estas son continuas. (Indicación. Si \(\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) - \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) \) \(> 0 \), entonces existe un rectángulo \(A \), con \((x_0, y_0) \in A \) tal que \(\frac{\partial^2 f}{\partial x \partial y}(x, y) - \frac{\partial^2 f}{\partial y \partial x}(x, y) > 0 \) para todo \((x, y) \in A \).

54. Usando el Teorema de Fubini, deduzca una fórmula para calcular el volumen de un conjunto en \(\mathbb{R}^3 \) obtenido haciendo girar un conjunto en el plano \(yz \) alrededor del eje \(x \).

55. Sea \(A \subset \mathbb{R}^n \) un conjunto de medida cero. Pruebe que \(A \times \mathbb{R}^k \) tiene medida cero en \(\mathbb{R}^{n+k} \).

56. Sea \(M^m \subset \mathbb{R}^n \) una superficie de clase \(C^k \), con \(k \geq 1 \) y con \(m < n \). Pruebe que \(M \) tiene medida cero.

57. Sea \(M^m \subset \mathbb{R}^n \) una superficie de clase \(C^k \), con \(k \geq 1 \), Pruebe que existe una partición de la unidad \(C^k \) en \(M \).
58. Sea $M^m \subset \mathbb{R}^n$ una superficie de clase C^k, con $k \geq 1$. Dados dos conjuntos cerrados disjuntos A, B de M. Pruebe que existe una función de clase C^k, $f : M \to \mathbb{R}$, con $0 \leq f(p) \leq 1$ para todo $p \in M$, que satisface $f/A = 0$ y $f/B = 1$. (Indicación. Considere el cubrimiento abierto de M dado por los conjuntos $F = M - A$ y $G = M - B$, y una partición de la unidad asociada a él).

59. Sea $f : [a, b] \to \mathbb{R}^n$ un camino tal que $f'(t) \neq 0$ para todo $t \in [a, b]$. Pruebe que existe un difeomorfismo $\varphi : [c, d] \to [a, b]$, con $\varphi'(s) > 0$ para todo $s \in [c, d]$, tal que $g = f \circ \varphi : [c, d] \to \mathbb{R}^n$ satisface $\|g'(s)\| = 1$, para todo $s \in [c, d]$ ($\|\cdot\|$ norma euclidiana). Use lo anterior para reparametrizar el camino $f : [0, 1] \to \mathbb{R}^3$, dado por $f(t) = (e^t \cos(t), e^t \sin(t), e^t)$.

60. Sea $f : [0, 1] \to \mathbb{R}^2$, dado por

$$f(t) = \begin{cases} (t^\alpha \sin(1/t), t), & t \neq 0 \\ (0, 0), & t = 0 \end{cases}$$

Pruebe que f es rectificable si, y sólo si, $\alpha > 1$.

61. Sea $C \subset \mathbb{R}^n$ un conjunto cerrado. Pruebe que si C tiene medida nula entonces Fr(C) (frontera de C) también tiene medida nula. Ilustre con un ejemplo que puede existir un conjunto $C \subset \mathbb{R}^n$ con medida nula y tal que Fr(C) no tiene medida nula.

62. Calcule la longitud del camino $f : [0, 2\pi] \to \mathbb{R}^2$, dado por $f(t) = (\frac{\alpha}{3}(2 \cos(t) + \cos(2t)), \frac{\alpha}{3}(2 \sin(t) + \sin(2t)))$.
63. Calcular \(\int_M xyz \, dx \, dy \, dz \), donde \(M \) es la región limitada por las superficies:

(a) \(x^2 + y^2 - 2x = 0, \ y = z^2, \ z = 0; \)

(b) \(x^2 + y^2 - 2z = 0, \ y = z^2. \)

64. Exprese la integral
\[\int_0^1 \int_0^{1-x} \int_0^{g(x,y)} f(x,y,z) \, dz \, dy \, dx \]
como una integral en coordenadas cilíndricas.

65. Encuentre el volumen del sólido \(V = \{(x,y,z) : x^2 + y^2 + z^2 \leq a^2, \ x^2 + y^2 \geq b^2 \} \), donde \(a > b \).

66. Calcular \(\int_D yz \, dx \, dy \) , donde \(D \) es el primer octante del sólido delimitado por el elipsoide \(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \).

67. Integrar cambiando el orden de todas las formas posibles

(a) \(\int_0^1 \int_0^x \int_0^y f(x,y,z) \, dz \, dy \, dx \)

(b) \(\int_0^1 \int_0^x \int_0^{x^2+y^2} f(x,y,z) \, dz \, dy \, dx \).

68. Mediante un cambio de variable a coordenadas cilíndricas, calcule las siguientes integrales:

(a) \(\int_D (x^2 + y^2)^2 \, dx \, dy \, dz \), \(D = \{(x,y,z) : x^2 + y^2 \leq 2z \leq 4 \}; \)

(b) \(\int_D z \, \exp\{-(x^2+y^2)\} \, dx \, dy \, dz \), \(D = \{(x,y,z) : 2(x^2+y^2) \leq z^2 \leq x^2 + y^2 + 1, \ z \geq 0 \} \).

69. Calcular \(\int_D z \, dx \, dy \) , siendo \(D = \{(x,y,z) \in \mathbb{R}^3 : \ x^2 + y^2 \leq z^2, x^2 + y^2 + z^2 \leq 1, \ z \geq 0 \} \).
70. Sea $R \subset \mathbb{R}^m$ un rectángulo compacto, y sea $f : R \to \mathbb{R}$. Se definen las aplicaciones $f^+, f^- : R \to \mathbb{R}$ por $f^+(x) = \max\{f(x), 0\}$ y $f^-(x) = \max\{0, -f(x)\}$, llamadas parte positiva y parte negativa de f, respectivamente. Pruebe que

(a) $f = f^+ - f^-$, $|f| = f^+ + f^-$.
(b) Si f es integrable entonces f^+ y f^- también lo son.

71. Calcular la integral $\int_M \frac{1}{(1 + x + y + z)} \, dx \, dy \, dz$, donde la región M está limitada por las superficies $x + y + z = 1$, $x = 0$, $y = 0$, $z = 0$.

72. Sean $U \subset \mathbb{R}^n$ un abierto, y $f : U \to \mathbb{R}^m$ una aplicación continua. Pruebe que $\text{graf}(f) = \{(x, f(x)) \in \mathbb{R}^n \times \mathbb{R}^m : x \in U\}$ tiene medida $(n + m)$–dimensional cero.

73. Calcular $\int_S \frac{1}{(x^2 + y^2 + z^2)^2} \, dx \, dy \, dz$, donde S el sólido comprendido entre las esferas $x^2 + y^2 + z^2 = a^2$ y $x^2 + y^2 + z^2 = b^2$, con $0 < b < a$.

74. Calcular el volumen del sólido acotado por la superficie $z = x^2 + y$, y el rectángulo $R = [0, 1] \times [1, 2]$ y los lados verticales de R.

75. Hallar el volumen del sólido $D = \left\{(x, y, z) : 0 \leq z \leq \frac{x^2}{4} + \frac{y^2}{9} \leq 1\right\}$.

76. Calcular el volumen del sólido limitado por la esfera $x^2 + y^2 + z^2 = a^2$ y el cilindro $x^2 + y^2 - ay = 0$.

77. Calcule la integral $\int_R (1 + xy) \, dx \, dy$
de dos maneras distintas, siendo $R = R_1 \cup R_2$, donde

$$R_1 = \begin{cases}
-1 \leq x \leq 0 \\
0 \leq y \leq (x+1)^2
\end{cases}$$

$R_2 = \begin{cases}
0 \leq x \leq 1 \\
0 \leq y \leq (x-1)^2.
\end{cases}$

78. Calcular el volumen del sólido de revolución $z^2 \geq x^2 + y^2$ encerrado por la superficie $x^2 + y^2 + z^2 = 1$.

79. Calcular el volumen de la región acotada por las superficies $z = x^2 + y^2$ y $z = 10 - x^2 - 2y^2$.

80. Calcular la masa del sólido acotado por el cilindro $x^2 + y^2 = 2x$ y el cono $z^2 = x^2 + y^2$ si la densidad es $\rho = \sqrt{x^2 + y^2}$.

81. Expresar las integrales siguientes en el orden indicado en cada caso

(a) $\int_0^1 \int_0^y \int_0^{\sqrt{1-y^2}} f(x, y, z) dz dx dy$, en el orden z, y, x;

(b) $\int_0^4 \int_0^{4-x^2} \int_0^{\frac{12-3x-6y}{4}} f(x, y, z) dz dy dx$, en el orden y, x, z.

82. Calcular las siguientes integrales

(a) $\int_0^2 \int_0^1 (1 + 2x + 2y) dy dx$

(b) $\int_0^\pi \int_0^{\frac{\pi}{2}} 2 \sen(x) \cos^2(y) dy dx$

(c) $\int_0^6 \int_0^3 (x + y) dx dy$

(d) $\int_0^1 \int_y^{\sqrt{y}} x^2 y^2 dx dy$

(e) $\int_{-a}^a \int_{-\sqrt{a^2-x^2}}^{a} (x + y) dy dx$
(f) \[\int_0^1 \int_y^{\sqrt{y}} \frac{\sin(x)}{x} \, dx \, dy \]

83. Muestre que la integral de las siguientes funciones existen sobre
\(R = [0,1] \times [0,1] \),

(a)
\[f(x,y) = \begin{cases} \sin\left(\frac{1}{x+y}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases} \]

(b)
\[f(x,y) = \begin{cases} 0 & \text{si } (x,y) = \left(\frac{1}{m},\frac{1}{n}\right) \text{, para algún } m,n \in \mathbb{N} \\ 1 & \text{otro caso.} \end{cases} \]

84. Sea \(D \) la región del primer cuadrante delimitada por las curvas
\(x^2 + y^2 = 4 \), \(x^2 + y^2 = 9 \), \(x^2 - y^2 = 4 \), \(x^2 - y^2 = 1 \). Calcular
\[\int_D xy \, dxdy \, . \]

85. Cambiando el orden de integración (justifique porqué es posible
hacer eso en cada caso), muestre que

(a)
\[\int_0^1 \int_0^x fdy \, dx + \int_1^2 \int_x^{2-x} fdy \, dx = \int_0^1 \int_y^{2-y} f \, dx \, dy \]

(b)
\[\int_{\frac{x^2}{a}}^{\frac{y^2}{a}} f \, dxdy + \int_{a}^{b} \int_y^{b} f \, dxdy = \int_a^{b} \int_{\frac{x^2}{a}}^{x} f \, dy \, dx \]

(c)
\[\int_0^1 \int_0^{\sqrt{x}} dy \, dx + \int_1^2 \int_0^{\sqrt{\frac{4x-x^2-3}{2}}} ddy \, dx = \int_0^1 \int_{\sqrt{2y-y^2}}^{2} dx \, dy \]

86. Sea \(D \) la región dada como el conjunto de los puntos \((x,y) \) del
plano donde \(1 \leq x^2 + y^2 \leq 2 \) e \(y \geq 0 \). Calcular
\[\int_D (1 + xy) \, dV \, . \]

87. Calcular
\[\int_D xy \, dxdy \, , \text{siendo } D \text{ el conjunto de los puntos } (x,y) \text{ del plano que satisfacen } 0 \leq y \leq x + 2 \text{, } 4x^2 + 9y^2 \leq 36 \, . \]
88. Hallar el área comprendida entre las circunferencias \(x^2 + y^2 = 2x \), \(x^2 + y^2 = 4x \) y las rectas \(y = x \), \(y = 0 \).

89. Hallar el área de la región limitada por las gráficas de \(f(x) = \text{sen}(x) \) y \(g(x) = \cos(x) \) entre \(x = \frac{\pi}{4} \) y \(x = \frac{5\pi}{4} \).

90. Una pirámide está limitada por los tres planos coordenados y el plano \(x + 2y + 3z = 6 \). Representar el sólido y calcular su volumen por integración doble.

91. Sea \(D \) el paralelogramo limitado por \(y = -x \), \(y = -x + 1 \), \(y = 2x, y = 2x - 3 \). Calcular \(\int_D (x + y)^2 dxdy \).

92. Sea \(B \) la bola de centro en el origen y radio 1. Calcular \(\int_B \frac{q}{\sqrt{2 + x^2 + y^2 + z^2}} dxdydz \).

93. Dibujar la región cuya área se representa mediante la integral
\[
\int_0^4 \int_{\sqrt{y}}^{\sqrt{4-y}} dydx
\]
A continuación, hallar otra integral iterada usando el orden \(dy \, dx \) para representar la misma área. Calcule la integral.

94. Sea \(D \) la región del plano limitado por las rectas \(y = 0 \), \(y = 1 \), \(x = -1 \), \(x = y \). Calcular \(\int_D (xy - y^3) dxdy \).

95. Calcular \(\int_D (x^2 - y) dxdy \), siendo \(D \) la región comprendida entre las gráficas de las curvas \(y = x^2 \), \(y = -x^2 \), y las rectas \(x = 1 \), \(x = -1 \).

96. Sea \(D \) la región \(0 \leq y \leq x \), \(0 \leq x \leq 1 \). Calcular \(\int_D (x + y) dxdy \) haciendo el cambio \(x = u + v \), \(y = u - v \). Verificar la respuesta directamente la integral mediante integrales iteradas.
97. Calcular \(\int_D xy \, dx \, dy \), siendo \(D \) la región del primer cuadrante encerrada por las parábolas \(y^2 = x \), \(y = x^2 \).

98. Sea \(D \) la región acotada por las partes positivas de los ejes \(OX, OY \) y la recta \(3x + 4y = 10 \). Calcular \(\int_D (x^2 + y^2) dV \).

99. Sea \(D \) la región acotada por las partes positivas de los ejes \(OX, OY \) y la recta \(3x + 4y = 10 \). Calcular \(\int_D (x^2 + y^2) dV \).

100.

(a) Hallar el volumen de la región sólida que está limitada por el paraboloide \(z = 4 - x^2 - 2y^2 \) y el plano \(XY \).

(b) Hallar el volumen de la región sólida limitada superiormente por el paraboloide \(z = 1 - x^2 - y^2 \) e inferiormente por el plano \(z = 1 - y \).

(c) Hallar el volumen de la región sólida limitada por \(z = x^2 + y^2 \), \(x^2 + y^2 = 4 \), \(z = 0 \).

(d) Se define el valor medio de \(f(x, y) \) en la región \(R \) por

\[
\text{valor medio} = \frac{1}{A} \int_R f(x, y) \, dA
\]

siendo \(A \) el área de \(R \). Calcule en cada caso el valor medio:

i. \(f(x, y) = x \), siendo \(R \) el rectángulo con vértices (0,0), (4,0), (4,2), (0,2).

ii. \(f(x, y) = xy \), siendo \(R \) el rectángulo con vértices (0,0), (4,0), (4,2), (0,2).

iii. \(f(x, y) = x^2 + y^2 \), siendo \(R \) el cuadrado con vértices (0,0), (2,0), (2,2), (0,2).
iv. \(f(x, y) = e^{x+y} \), siendo \(R \) el triángulo con vértices (0,0), (0,1), (1,1).

101. Sea \(T(u, v) = (x(u, v), y(u, v)) = (4u, 2u + 3v) \). Sea \(D^* = [0, 1] \times [1, 2] \). Describir \(D = T(D^*) \) y calcular

\[
(a) \int \int_D xy \, dx \, dy, \quad (b) \int \int_D (x - y) \, dx \, dy,
\]
haciendo un cambio para evaluarlas como integrales sobre \(D^* \).

102. Calcular las siguientes integrales.

(a) \(\int_3^1 \int_2^1 \int_0^1 (x + y + z) \, dx \, dy \, dz \)

(b) \(\int_{-1}^1 \int_{-1}^1 \int_{-1}^1 x^2 y^2 z^2 \, dx \, dy \, dz \)

(c) \(\int_0^1 \int_0^1 \int_0^1 x \, dx \, dy \, dz \)

(d) \(\int_0^4 \int_0^\pi \int_0^{1-x} x \, \text{sen}(y) \, dz \, dy \, dx \)

(e) \(\int_0^9 \int_0^y \int_0^{\sqrt{y^2 - 9x^2}} z \, dz \, dy \)

(f) \(\int_0^{\sqrt{2}} \int_{-\sqrt{2}}^{\sqrt{2-y^2}} \int_0^{\sqrt{x^2 - y^2}} x \, dz \, dy \)

(g) \(\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \int_0^{\frac{1}{y}} \text{sen}(y) \, dz \, dy \)

(h) \(\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \int_0^{\frac{12-3y-6y}{4}} \, dz \, dy \)

103. Sea \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \) una aplicación lineal con \(\det(T) \neq 0 \), y sea \(B \) una bola con centro en el origen. Demostrar que

\[
\int_{T(B)} e^{-(T(y), T(y))} \, dy_1 \cdots dy_n = \int_B e^{-(x,x)} |\det(T^{-1})| dx_1 \cdots dx_n.
\]
104. Calcular las siguientes integrales en las regiones que se indican

(a) \(\int_{R} (x^2 + y^2) dV, \quad R = [0, 1] \times [0, 1]; \)

(b) \(\int_{R} \sin(x + y) dV, \quad R = [0, 1] \times [0, 1]; \)

(c) \(\int_{R} -xe^{x} \sin\left(\frac{\pi y}{2}\right) dV, \quad R = [0, 2] \times [-1, 0]; \)

(d) \(\int_{R} |y| \cos\left(\frac{\pi x}{4}\right) dV, \quad R = [0, 2] \times [-1, 0]. \)

105. Se define el volumen del sólido \(Q \) por

\(V(Q) = \int_{Q} dV \)

(a) Hallar el volumen del elipsoide sólido dado por \(4x^2 + 4y^2 + z^2 = 16 \)

(b) Hallar el volumen de las siguientes regiones sólidas.

(c) La región del primer octante limitada superiormente por el cilindro \(z = 1 - y^2 \) y situada entre los planos verticales \(x + y = 1 \) y \(x + y = 3 \).

(d) El hemisferio superior \(z = \sqrt{1 - x^2 - y^2} \).

(e) \(z = 4 - x^2, \ y = 4 - x^2 \) en el primer octante.

106. Pase la integral en coordenadas rectangulares a coordenadas cilíndricas y esféricas y calcule la integral más simple.

(a) \(\int_{-2}^{2} \int_{\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} x \ dz \ dy \ dx \)

(b) \(\int_{0}^{2} \int_{0}^{\sqrt{4-x^2}} \sqrt{16-x^2-y^2} \ dz \ dy \ \ dx \)

(c) \(\int_{-a}^{a} \int_{\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} x \ dz \ dy \ dx \)
(d) \[\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx \]

107. Cambiar el orden de integración, describir las regiones correspondientes y calcular las integrales de las dos maneras,

(a) \[\int_0^1 \int_x^1 xy \, dy \, dx ; \quad (b) \int_0^{\pi/2} \int_0^{\cos \theta} \cos \theta \, dr \, d\theta ; \]

(c) \[\int_0^4 \int_{y/2}^2 e^{x^2} \, dx \, dy ; \quad (d) \int_{-3}^1 \int_{-\sqrt{9-y^2}}^{\sqrt{9-y^2}} x^2 \, dx \, dy . \]

108. Sea \(D \) el disco de centro en el origen y radio 1. Calcular Evaluar \(\int_D e^{x^2+y^2} \, dx \, dy \) haciendo un cambio de variables a coordenadas polares.

109. Encuentre la masa del sólido acotado por la esfera \(x^2+y^2+(z+1)^2 = 4 \) y el plano \(xy \), si la función de densidad es \(2-z \).

110. Encuentre la masa del sólido acotado por los planos \(xy, yz, xz, \) \(x/2+y/4+z = 1 \), si la función de densidad es dada por \(x^2+y^2+z^2 \).

111. Encuentre el volumen del sólido acotado por la esfera \(x^2+y^2+(z-1)^2 = 4 \) y el plano \(xy \).

112. Mediante un cambio de variable a coordenadas polares, calcule las siguientes integrales

(a) \(\int_D (1+x^2+y^2)^{-3/2} \, dx \, dy \), donde \(D \) es el triángulo de vértices \((0,0) \), \((1,0) \), y \((1,1) \).

(b) \(\int_D (x^3+y^3) \, dx \, dy \), donde \(D = \{(x,y) : x \geq 0, \ y \geq 0, \ x^2+y^2 \leq 1, \ x^2+y^2-2x \geq 0\} \).
113. Calcular \(\int_{D} \left(1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} \right) \, dx \, dy \), donde \(D \) es la región acotada por la elipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), con \(a, b > 0 \).

114. (a) Sea \(R \) la región del plano acotada por la curva
\[
\left(\frac{x}{a} + \frac{y}{b} \right)^4 = \frac{x^2}{h^2} + \frac{y^2}{k^2}
\]
en el primer cuadrante, donde \(a, b, h, \) y \(k \) son números positivos dados. Use el cambio de variable \(x = ar \cos^2(\theta) \), \(y = br \sen^2(\theta) \) para calcular \(\int_{R} \, dx \, dy \)

(b) Calcule \(\int_{\Omega} \sqrt{R^2 - x^2 - y^2 - z^2} \, dx \, dy \, dz \) donde \(\Omega \) es el sólido delimitado por la esfera de centro en el origen y radio \(R > 0 \).

115. Calcule el valor de la integral de \(f(x, y) = \sen^2(x^2 + y^2) \) sobre el disco de radio 4

116. Un cono de helado es la región acotada por la semi-esfera \(z = \sqrt{16 - x^2 - y^2} \) y el cono \(z = \sqrt{x^2 + y^2} \). Encuentre su volumen.

117. Calcular \(\int \int_{D} (x^2 + y^2)^{3/2} \, dx \, dy \), donde \(D \) el disco \(x^2 + y^2 \leq 4 \).

118. Cambiar el orden de integración en

(a) \(\int_{0}^{4} \int_{\frac{\sqrt{16-x^2}}{2}}^{\frac{4-\sqrt{16-x^2}}{2}} f(x, y) \, dy \, dx + \int_{4}^{8} \int_{\frac{\sqrt{8-y^2}}{\pi}}^{\frac{\sqrt{8y}}{\pi}} f(x, y) \, dy \, dx \)

(b) \(\int_{0}^{4} \int_{\frac{\sqrt{8y}}{\sqrt{8y-y^2}}}^{\frac{\sqrt{8y}}{\sqrt{8y-y^2}}} f(x, y) \, dx \, dy \).

(c) \(\int_{1}^{5} \int_{0}^{\log x} xe^{2y} \, dy \, dx \)
119. Evaluar las siguientes integrales iteradas

(a) \(\int_{-1}^{1} \int_{0}^{1} (x^4 y + y^2) \, dy \, dx \);
(b) \(\int_{0}^{1} \int_{0}^{1} x y e^{x+y} \, dy \, dx \);
(c) \(\int_{-1}^{1} \int_{1}^{2} (-x \ln y) \, dy \, dx \);
(d) \(\int_{0}^{1} \int_{0}^{1} \ln[(x + 1)(y + 1)] \, dx \, dy \).

120. Evaluar las siguientes integrales iteradas y describir las regiones determinadas por los límites

(a) \(\int_{0}^{1} \int_{0}^{x^2} \, dy \, dx \);
(b) \(\int_{0}^{1} \int_{0}^{e^x} (x + y) \, dy \, dx \);
(c) \(\int_{0}^{2} \int_{0}^{y^2} (x^2 + y) \, dx \, dy \);
(d) \(\int_{0}^{\pi/2} \int_{0}^{\cos x} y \, sen x \, dy \, dx \);
(e) \(\int_{-1}^{1} \int_{|x|}^{1} e^{x+y} \, dy \, dx \);
(f) \(\int_{0}^{1} \int_{0}^{2(1-x^2)^{1/2}} x \, dx \, dy \).

121. Cambiar el orden de integración en cada una de las integrales siguientes y calcularlas

(a) \(\int_{0}^{1} \int_{0}^{x^2} f(x, y) \, dy \, dx \);
(b) \(\int_{0}^{1} \int_{-y}^{y} f(x, y) \, dx \, dy \);
(c) \(\int_{1}^{4} \int_{x}^{2x} f(x, y) \, dy \, dx \).

122. Integrar \(z e^{x^2+y^2} \) sobre el cilindro \(x^2 + y^2 \leq 4 \), \(2 \leq z \leq 3 \).

123. Calcular \(\int_{S} e^{(y-x)/(y+x)} \, dx \, dy \) donde \(S \) es la región delimitada por la recta \(x + y = 2 \) y los ejes coordenados en el primer cuadrante.
Ind. Use el cambio de variable \(u = y - x \), \(v = y + x \).

124. Mediante un cambio de variable a coordenadas esféricas, calcúlense las siguientes integrales:
(a) \[\int_D xyz \, dx\,dy\,dz, \quad D = \{(x, y, z) : x \geq 0, y \geq 0, z \geq 0, x^2 + y^2 + z^2 \leq 1\}; \]

(b) \[\int_D (x^2 + y^2 + z^2) \, dx\,dy\,dz, \quad D = \{(x, y, z) : 2az \leq x^2 + y^2, x^2 + y^2 + z^2 \leq 3a^2\}. \]
Cálculo Integral
Capítulo 11

Formas Diferenciales en Superficies

Sea $M^m \subset \mathbb{R}^n$ una superficie de clase C^k ($k \geq 1$). El conjunto $TM = \{(p, v) \in \mathbb{R}^n \times \mathbb{R}^n : p \in M \ y \ v \in T_p M\}$ es una superficie de clase C^{k-1} y dimensión igual a $2 \dim M$. En lo que sigue, para no estar preocupados de la clase de diferenciabilidad vamos asumir que ella es lo suficientemente grande de modo que podamos efectuar todos los cálculos que nos sean necesarios.

Definición 11.1 Una 0–forma diferenciable de clase C^r en M es una aplicación $f : M \to \mathbb{R}$ de clase C^r.

Ahora definiremos k–formas diferenciables para $k \geq 1$.

Definición 11.2 Una 1–forma diferenciable de clase C^r en M es una aplicación $\omega : TM \to \mathbb{R}$ de clase C^r, tal que para cada $x \in M$ la aplicación $\omega_x : T_x M \to \mathbb{R}$ definida por $\omega_x(v) = \omega(x, v)$ es lineal, esto es, para cada $x \in M$ se tiene que $\omega_x \in T_x M^*$ (espacio dual de $T_x M$)
Ejemplos.

1. $\omega = x^2 y + e^z$ es una 0-forma en \mathbb{R}^3.

2. $\omega(x, y, z) = x^2 y + e^z$ es una 0-forma en $\mathbb{R}^3 - \{(x, y, z) : z = 0\}$.

3. Sea $f : M \rightarrow \mathbb{R}$ una aplicación de clase C^{r+1}, entonces la aplicación tangente $Tf : TM \rightarrow \mathbb{R}$ definida por $Tf(x, v) = Df(x)v$ en una 1-forma de clase C^r en M.

Sea $\varphi : U_0 \subset \mathbb{R}^m \rightarrow U \subset M$ una parametrización y sea $x = \varphi(u)$, en T_xM tenemos una base natural $B_\varphi(x) = \{\frac{\partial \varphi}{\partial x_1}(u), \ldots, \frac{\partial \varphi}{\partial x_m}(u)\}$. Asociada a esta parametrización definimos las 1-formas dx_1, \ldots, dx_m por

$$dx_j(x) \left(\frac{\partial \varphi}{\partial x_i}(u)\right) = \delta_{ij},$$

donde $\delta_{ij} = 1$ si $i = j$ y $\delta_{ij} = 0$ en otro caso.

Es claro que $\{dx_1(x), \ldots, dx_m(x)\}$ es una base de T_xM^*. Luego, dada una 1-forma ω en U, podemos escribirla como $\omega = \sum_{i=1}^{m} \omega_i dx_i$, donde $\omega_1, \ldots, \omega_m : U \rightarrow \mathbb{R}$ son aplicaciones diferenciables de la misma clase de diferenciabilidad que ω. Evaluando ω_x en el vector $\frac{\partial \varphi}{\partial x_j}(u) \in T_xM$ tenemos

$$\omega_x(x) = \sum_{i=1}^{m} \omega_i(x) dx_i \left(\frac{\partial \varphi}{\partial x_j}(u)\right) = \omega_j(x),$$

es decir, $\omega_j(x) = \omega_x\left(\frac{\partial \varphi}{\partial x_j}(u)\right)$. Por ejemplo, si $f : U \subset M \rightarrow \mathbb{R}$ es de clase C^{r+1}, entonces $Tf(x, \frac{\partial \varphi}{\partial x_i}(u)) = \sum_{i=1}^{m} Tf\left(\frac{\partial \varphi}{\partial x_i}(u)\right) dx_i = \sum_{i=1}^{m} \frac{\partial (f \circ \varphi)}{\partial x_i}(u) dx_i$.

Si $U \subset \mathbb{R}^m$ es un conjunto abierto, sabemos que U es una superficie de clase C^∞ y dimensión m, con una parametrización dada por $\varphi = 1/U$. Tenemos que una 1-forma diferenciable sobre U puede ser escrita como $\omega = \omega_1 dx_1 + \cdots + \omega_m dx_m$ donde $\omega_1, \ldots, \omega_m : U \rightarrow \mathbb{R}$.
son aplicaciones diferenciables y \(dx_i(x)v = v_i \), para todo vector \(v = (v_1, \ldots, v_m) \in \mathbb{R}^m \). Si \(f : U \to \mathbb{R} \) es una aplicación diferenciable, entonces \(T f(x, v) = \sum_{i=1}^{m} \frac{\partial f}{\partial x_i}(x)\, dx_i(x)v \) que es simplemente la diferencial de \(f \), como fue definida en el Capítulo 7.

Ejemplos.

1. Si \(f : \mathbb{R} \to \mathbb{R} \) es una aplicación diferenciable de clase \(C^r \) \((r \geq 1) \), entonces \(\omega = f(x)dx \) es una 1–forma de clase \(C^r \) en \(\mathbb{R} \).

2. Sea \(U \subset \mathbb{R}^m \) un conjunto abierto, y sean \(f_i : U \to \mathbb{R} \) \((1 = 1, \ldots, m) \) funciones de clase \(C^r \), entonces \(\omega = \sum_{i=1}^{m} f_i dx_i \) es una 1–forma de clase \(C^r \).

3. \(\omega = (2xy^3 + 4x^3)dx + (3x^2y^2 + 2y)dy \) es una 1–forma de clase \(C^\infty \) en \(\mathbb{R}^2 \).

4. Sea \(\omega = \frac{-y}{x^2+y^2} \, dx + \frac{x}{x^2+y^2} \, dy \) es una 1–forma de clase \(C^\infty \) en \(\mathbb{R}^2 - \{ (0,0) \} \).

Antes de definir \(k \)–formas diferenciables para \(k \geq 2 \), sobre una superficie \(M^m \subset \mathbb{R}^n \) de clase \(C^r \) \((r \geq 2) \), probaremos que el conjunto \(TM^k = \{ (x,v_1,\ldots,v_k) : x \in M, v_i \in T_x M, i = 1,\ldots,k \} \subset \mathbb{R}^n \times \cdots \times \mathbb{R}^n \) \((k + 1) \) factores, es una superficie de clase \(C^{r-1} \) y dimensión \((k + 1) \cdot \dim M \). En efecto, para simplificar la notación escribimos \((\mathbb{R}^n)^\ell \) para indicar el producto cartesiano \(\mathbb{R}^n \times \cdots \times \mathbb{R}^n \) de \(\ell \) factores de \(\mathbb{R}^n \). Sea \(\Pi : TM^k \to M \) la proyección \(\Pi(x,v_1,\ldots,v_k) = x \), se tiene que \(\Pi \) es una aplicación continua y localmente inyectiva. Ahora, sea \(\varphi : U_0 \subset \mathbb{R}^m \to U \subset M \) una parametrización, con \(x = \varphi(u) \), y sea \(V = \Pi^{-1}(U) \). Sea \(T^k \varphi : U_0 \times (\mathbb{R}^m)^k \to V \) la aplicación definida por \(T^k \varphi(y,v_1,\ldots,v_k) = (\varphi(y),D\varphi(y)v_1,\ldots,D\varphi(y)v_k) \). Es fácil ver que la
colección $A^k = \{(T^k\varphi,\Pi^{-1}(U)) : (\varphi,U) \text{ parametrización de } M\}$ es un atlas de clase C^{r-1} y dimensión $(k + 1) \cdot \dim M$ para TM^k. Los detalles de las verificaciones son dejadas a cargo del lector.

Definición 11.3 Una k-forma diferenciable de clase C^r en M es una aplicación $\eta : TM^k \to \mathbb{R}$ de clase C^r, tal que para cada $x \in M$ la aplicación $\eta_x : (T_xM)^k \to \mathbb{R}$ definida por $\eta_x(u_1,\ldots,u_k) = \eta(x,u_1,\ldots,u_k)$ es una aplicación k–multilineal alternada, es decir, η_x es lineal en cada coordenada y

$$
\eta_x(u_1,\ldots,u_i,\ldots,u_j,\ldots,u_k) = -\eta_x(u_1,\ldots,u_j,\ldots,u_i,\ldots,u_k).
$$

Notación. Denotamos el conjunto de las k–formas diferenciables de clase C^r en M^m por $\Lambda^{k,r}(M)$. Notemos que $\dim \Lambda^{m,r}(M) = 1$ (prueba a cargo del lector). También usamos la notación $\Lambda^k(T_xM) = \{\omega : T_xM \to \mathbb{R} : \omega \text{ k–lineal alternada}\}$. Note que $\dim \Lambda^m(T_xM) = 1$.

Sean $\omega, \gamma \in \Lambda^{k,r}(M)$ y sea $f : M \to \mathbb{R}$ es una función diferenciable. Definimos las k–formas $\omega + \gamma$ y $f\omega$ por

$$
(\omega + \gamma)_x(v_1,\ldots,v_k) = \omega_x(v_1,\ldots,v_k) + \gamma_x(v_1,\ldots,v_k)
$$

$$
(f\omega)_x(v_1,\ldots,v_k) = f(x)\omega_x(v_1,\ldots,v_k).
$$

Por otra parte, si $\alpha \in \Lambda^{k,r}(M)$ y $\beta \in \Lambda^{\ell,r}(M)$, no tiene sentido definir $\alpha + \beta$. A seguir definimos un producto, llamado producto “wedge”,

$$(\text{cuña}) \wedge : \Lambda^{k,r}(M) \times \Lambda^{\ell,r}(M) \to \Lambda^{k+\ell,r}(M)$$

que relaciona las formas α y β.

Definición 11.4 Sean $\alpha \in \Lambda^{k,r}(M)$ y $\beta \in \Lambda^{\ell,r}(M)$. El producto exterior de α por β es la $(k+\ell)$–forma diferenciable $\alpha \wedge \beta \in \Lambda^{k+\ell,r}(M)$.
definida por

\[\alpha \wedge \beta(x, u_1, \ldots, u_{k+\ell}) = \alpha_x \wedge \beta_x(u_1, \ldots, u_{k+\ell}) \]

\[= \frac{1}{k! \ell!} \sum_{\sigma \in S_{k+\ell}} \text{sign}(\sigma) \alpha_x(u_{\sigma(1)}, \ldots, u_{\sigma(k)}) \beta_x(u_{\sigma(k+1)}, \ldots, u_{\sigma(k+\ell)}) , \]

donde \(S_{k+\ell} \) es el conjunto de todas las permutaciones del conjunto \(\{1, \ldots, k+\ell\} \) y \(\text{sign}(\sigma) \) es el signo de la permutación \(\sigma \).

Veamos ahora como se escribe localmente una \(k \)-forma diferenciable. Sea \(\varphi : U_0 \subset \mathbb{R}^m \to U \subset M \) una parametrización. Para cada \(x = \varphi(u) \in U \), el conjunto \(B_\varphi(x) = \{ \frac{\partial \varphi}{\partial x_1}(u), \ldots, \frac{\partial \varphi}{\partial x_m}(u) \} \) es una base de \(T_xM \) y el conjunto \(B_\varphi^*(x) = \{ dx_1(x), \ldots, dx_m(x) \} \) es una base de \(T_xM^* \), dual de la base \(B_\varphi(x) \). Notemos que \(dx_{i_1} \wedge \cdots \wedge dx_{i_k} = 0 \) y que \(dx_i \wedge dx_j = -dx_j \wedge dx_i \). Esto nos lleva a considerar el conjunto de las \(k \)-formas dado por \(B_k^m(x) = \{ dx_{i_1} \wedge \cdots \wedge dx_{i_k}(x) : 1 \leq i_1 < \cdots < i_k \leq m \} \). Es inmediato ver que el conjunto \(B_k^m(x) \) contiene \(\frac{m!}{k!(m-k)!} \) elementos, y si \(1 \leq j_1 < \cdots < j_k \leq m \) entonces \(dx_{i_1}(x) \wedge \cdots \wedge dx_{i_k}(x) \left(\frac{\partial \varphi}{\partial x_{j_1}}(u), \ldots, \frac{\partial \varphi}{\partial x_{j_k}}(u) \right) = \delta_{I,J} \), donde \(I = (i_1, \ldots, i_k) \), \(J = (j_1, \ldots, j_k) \) y

\[\delta_{I,J} = \begin{cases} 1 & \text{si } J = I \\ 0 & \text{si } J \neq I \end{cases} . \]

Por otra parte, si \(\omega \) es una \(k \)-forma diferenciable en \(U \), sean \(x \in U \) y \(u_1, \ldots, u_k \in T_xM \), donde \(u_i = \sum_{j=1}^m v_{ij} \frac{\partial \varphi}{\partial x_j}(u) \), para \(1 \leq i \leq k \), tenemos

\[\omega_x(u_1, \ldots, u_k) = \sum_{I} v_{i_1j_1} \cdots v_{i_kj_k} \omega_x \left(\frac{\partial \varphi}{\partial x_{i_1}}(u), \ldots, \frac{\partial \varphi}{\partial x_{i_k}}(u) \right) , \]
donde $I = (i_1, \ldots, i_k)$ recorre todas las sucesiones de k elementos en $\{1, \ldots, m\}$. Como ω_x es k–lineal alternada se tiene que

$$
\omega_x(u_1, \ldots, u_k) = \sum_J \sum_{\sigma \in S_k} \text{sign} (\sigma) v_{1j_1(1)} \cdots v_{kj_{\ell(k)}} \omega_x \left(\frac{\partial \varphi}{\partial x_{j_1}} (u), \ldots, \frac{\partial \varphi}{\partial x_{j_{\ell(k)}}} (u) \right)
$$

aquí J recorre todas las sucesiones con k elementos de $\{1, \ldots, m\}$, con $1 \leq j_1 < \cdots < j_k \leq m$. Pero como $dx_{j_1}(x) \wedge \cdots \wedge dx_{j_k}(x)(u_1, \ldots, u_k) = \sum_{\sigma \in S_k} \text{sign}(\sigma) v_{1j_1(1)} \cdots v_{kj_{\ell(k)}}$, tenemos finalmente que

$$
\omega = \sum_J \omega_x \left(\frac{\partial \varphi}{\partial x_{j_1}} (u), \ldots, \frac{\partial \varphi}{\partial x_{j_{\ell(k)}}} (u) \right) dx_{j_1} \wedge \cdots \wedge dx_{j_k},
$$

que es la expresión local de ω en la parametrización $\varphi : U_0 \subset \mathbb{R}^m \rightarrow U \subset M$, y llamando $\omega_J(x) = \omega_x \left(\frac{\partial \varphi}{\partial x_{j_1}} (u), \ldots, \frac{\partial \varphi}{\partial x_{j_{\ell(k)}}} (u) \right)$, tenemos que

$$
\omega = \sum_J \omega_J(x) dx_{j_1} \wedge \cdots \wedge dx_{j_k},
$$

Notación. Si $I = (i_1, \ldots, i_k)$ es un arreglo de k índices, con $i_j \in \{1, \ldots, m\}$ y $1 \leq i_1 < \cdots < i_k \leq m$, denotamos $dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ simplemente por dx_I.

Observación. Si M^m es una superficie m–dimensional y ω es una m–forma de clase C^r sobre M, entonces localmente ω se escribe como $\omega = f \ dx_1 \wedge \cdots \wedge dx_m$, donde $f : M \rightarrow \mathbb{R}$ es una función de clase C^r.

Desde la definición, tenemos las propiedades siguientes.

Proposición 11.1 Sean $\alpha \in \Lambda^{k,r}(M)$, $\beta \in \Lambda^{\ell,r}(M)$ y $\gamma \in \Lambda^{n,r}(M)$ forma diferenciables de clase C^r en M. Entonces

1. $\alpha \wedge \beta \in \Lambda^{k+\ell,r}(M)$;

2. Si $\ell = n$ entonces $\alpha \wedge (f \beta + \gamma) = f (\alpha \wedge \beta) + (\alpha \wedge \gamma)$ y $(f \beta + \gamma) \wedge \alpha = f (\beta \wedge \alpha) + (\gamma \wedge \alpha)$, donde $f : M \rightarrow \mathbb{R}$ es una aplicación C^r;
3. \((\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)\);

4. \(\alpha \wedge \beta = (-1)^{k\ell} \beta \wedge \alpha\).

Demostración. Las propiedades (1), (2) y (3) se deducen inmediatamente desde la definición, y la prueba se deja deja al lector (ver [20]). Vamos a probar la propiedad (4). Escribamos \(\alpha = \sum_I a_I dx_I\), donde \(I = (i_1, \ldots, i_k)\) e \(i_1 < \cdots < i_k\), y \(\beta = \sum_J b_J dx_J\), donde \(J = (j_1, \ldots, j_\ell)\) y \(j_1 < \cdots < j_\ell\). Entonces

\[
\alpha \wedge \beta = \sum_{IJ} a_I b_J \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_k} \wedge dx_{j_1} \wedge \cdots \wedge dx_{j_\ell}
\]

\[
= \sum_{IJ} a_I b_J (-1)^{k} dx_{i_1} \wedge \cdots \wedge dx_{i_{k-1}} \wedge dx_{j_1} \wedge dx_{i_k} \wedge \cdots \wedge dx_{j_\ell}
\]

\[
= \sum_{IJ} a_I b_J (-1)^{k} dx_{j_1} \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_{k-1}} \wedge dx_{j_2} \wedge \cdots \wedge dx_{j_\ell}.
\]

Como \(J\) tiene \(\ell\) elementos, repitiendo el argumento anterior para cada \(dx_{j_s}\), con \(j_s \in J\), obtenemos finalmente que

\[
\alpha \wedge \beta = \sum_{JJ} (-1)^{k\ell} b_J a_I dx_{j_1} \wedge \cdots \wedge dx_{j_\ell} \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_k} = (-1)^{k\ell} \beta \wedge \alpha.
\]

Observación. Desde la propiedad 4 arriba tenemos que si \(\alpha \in \Lambda^{k,r}(\mathcal{M})\) entonces \(\alpha \wedge \alpha = (-1)^{k^2} \alpha \wedge \alpha\), de donde \((1 - (-1)^{k^2}) \alpha \wedge \alpha = 0\). Luego si \(k^2\) es impar (lo que es equivalente a que \(k\) sea impar) nos queda \(2\alpha = 0\), de donde obtenemos que necesariamente \(\alpha = 0\).

11.1 Cambio de Variable y Formas Co–inducidas

Una \(k\)–forma diferenciable de clase \(C^r\) \((r \geq 1)\) puede ser escrita en un abierto \(U\), donde está definida una parametrización \(\varphi : U_0 \subset \mathbb{R}^m \rightarrow\)
$U \subset M$ como

$$\omega = \sum_{J} \omega_J(x) \, dx_{j_1} \wedge \cdots \wedge dx_{j_k}$$

$$= \sum_{J} (\omega_J \circ \varphi) \, dx_{j_1} \wedge \cdots \wedge dx_{j_k},$$

donde $J = (j_1, \ldots, j_k)$ recorre todas las sucesiones crecientes de k elementos en $\{1, \ldots, m\}$. En la suma anterior $\omega_J : U \rightarrow \mathbb{R}$ es una aplicación C^r, para todo J. Podemos pensar que $\{dx_1, \ldots, dx_m\}$ es la base dual de la base canónica de \mathbb{R}^m, y siendo así podemos representar ω en $U_0 \subset \mathbb{R}^m$ como

$$\sum_{J} (\omega_J \circ \varphi) \, dx_J,$$

demeramente, si $(v_1, \ldots, v_k) \in (\mathbb{R}^m)^k$ entonces

$$(\varphi_*(\omega))(v_1, \ldots, v_k) = \omega_{\varphi(q)}(D\varphi(q)v_1, \ldots, D\varphi(q)v_k).$$

Más general, si $f : M \rightarrow N$ es un difeomorfismo de clase C^s y $\omega \in \Lambda^{k,r}(M)$ podemos definir una k–forma diferenciable $f_*(\omega) \in \Lambda^{k,\ell}(N)$, con $\ell = \min\{r, s - 1\}$ por

$$(f_*(\omega))(v_1, \ldots, v_k) = \omega_{f_*(q)}(Df^{-1}(q)v_1, \ldots, Df^{-1}(q)v_k).$$

Análogamente, si $\omega \in \Lambda^{k,r}(N)$ podemos definir una k–forma diferenciable $f^*(\omega) \in \Lambda^{k,\ell}(M)$ por

$$(f^*(\omega))(u_1, \ldots, u_k) = \omega_{f(p)}(Df(p)u_1, \ldots, Df(p)u_k).$$

La forma $f^*(\omega)$ es llamada forma co–inducida por f y ω. Observemos que la operación $f^* : \Lambda^{k,r}(N) \rightarrow \Lambda^{k,\ell}(M)$ puede ser definida para cualquier $f : M \rightarrow N$ de clase C^s ($s \geq 1$), aún cuando M y N tengan distinta dimensión. También observamos que la operación $f_* : \Lambda^{k,r}(M) \rightarrow \Lambda^{k,\ell}(N)$ sólo tiene sentido cuando $f : M \rightarrow N$ es un difeomorfismo.

Ejemplos.
1. Si $\omega : N \to \mathbb{R}$ es una 0–forma diferenciable de clase C^r ($r \geq 1$) y sea $f : M \to N$ una aplicación de clase C^r. Entonces $f^*(\omega) = \omega \circ f$.

2. Sean $U \subset \mathbb{R}^m$ y $V \subset \mathbb{R}^n$ conjuntos abiertos, y sea $f : U \to V$ una aplicación de clase C^r ($r \geq 1$), donde $f = (f_1, \ldots, f_n)$. Dada la 1–forma $dx_j \in \Lambda^{1,\infty}(V)$ entonces $f^*(dx_j) \in \Lambda^{1,\infty}(U)$ es la 1–forma dada por

\[
(f^*(dx_j))_p(u) = dx_j(f(p))Df(p)u = dx_j(f(p))(Df_1(p)u, \ldots, Df_n(p)u) = Df_j(p)u = df_j(p)u
\]

para todo $p \in U$ y $u \in \mathbb{R}^m$, es decir, $f^*(dx_j) = df_j$.

3. Sea ω la 1–forma en $\mathbb{R}^2 - \{(0,0)\}$, dada por

$\omega = -\frac{y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy$.

Sea U el conjunto abierto en el plano (r, θ) dado por $U = \{(r, \theta) : r > 0, 0 < \theta < 2\pi\}$. Sea $\varphi : U \to \mathbb{R}^2$ la aplicación definida por $\varphi(r, \theta) = (r \cos(\theta), r \sen(\theta))$. Afirmamos que $\varphi^*\omega = d\theta$.

En efecto, $dx = \cos(\theta)dr - r \sen(\theta)d\theta$ y $dy = \sen(\theta)dr + r \cos(\theta)d\theta$. Luego,

$\varphi^*\omega = -\frac{r \sen(\theta)}{r^2} (\cos(\theta)dr - r \sen(\theta)d\theta) + \frac{r \cos(\theta)}{r^2} (\sen(\theta)dr + r \cos(\theta)d\theta) = d\theta$.

Como lo afirmamos
Sea \(f : M \to N \) una aplicación de clase \(C^s \), y como antes sea \(\ell = \min\{r, s - 1\} \). A seguir estudiaremos algunas propiedades del operador \(f^* : \Lambda^{k,r}(N) \to \Lambda^{k,\ell}(M) \).

Proposición 11.2 Las siguientes propiedades valen:

1. Si \(f : M \to N \) es de clase \(C^s \) y \(\ell = \min\{r, s - 1\} \), entonces \(f^* : \Lambda^{k,r}(N) \to \Lambda^{k,\ell}(M) \) es lineal.

2. Si \(\alpha \in \Lambda^{k,r}(N) \), \(\beta \in \Lambda^{j,r}(N) \) y \(f : M \to N \) es como en 1). Entonces \(f^*(\alpha \wedge \beta) = f^*(\alpha) \wedge f^*(\beta) \).

3. Si \(f : M \to N \) y \(g : N \to P \), entonces \((g \circ f)^* = f^* \circ g^* \).

4. Si \(I : M \to M \) es la aplicación identidad y \(\omega \in \Lambda^{k,r}(M) \) entonces \(I^* \omega = \omega \). En particular, si \(f : M \to N \) es un difeomorfismo entonces \((f^{-1})^* = (f^*)^{-1} \).

Demostración. Es una aplicación rutinaria de las definiciones, y por lo tanto de dejan a cargo del lector.

Observaciones.

1. Sea \(J \subset \mathbb{R} \) un intervalo abierto y sea \(\alpha : J \to \mathbb{R}^n \) una curva diferenciable, \(\alpha(t) = (\alpha_1(t), \ldots, \alpha_n(t)) \). Denotemos por \(i \) el vector tangente a \(\mathbb{R} \) en \(t \in J \). Entonces \(\alpha_* (i) = (\alpha'_1(t), \ldots, \alpha'_n(t)) \).

En efecto, sea \(t \in J \). Definamos la curva \(r(s) = s + t \) entonces \(r(0) = t \), y \(r'(0) = 1 \) es una base de \(T_r J = \mathbb{R} \), como acordamos, denotamos este vector simplemente por \(i \). Desde la definición, tenemos \(\alpha_* (i) = (\alpha \circ r)'(0) \), pero \((\alpha \circ r)(s) = \alpha(s + t) \) y

\[
(\alpha \circ r)'(0) = \left. \frac{d\alpha(s + t)}{ds} \right|_{s=0} = (\alpha'_1(t), \ldots, \alpha'_n(t))
\]

como afirmamos.
2. Sea \(J \subset \mathbb{R} \) un intervalo abierto y sea \(\alpha : J \to \mathbb{R}^n \) una curva diferenciable de clase \(C^\ell \) \((\ell \geq 1) \) y sea \(\omega = \sum_{i=1}^n f_i dx_i \) una 1–forma en un conjunto abierto de \(\mathbb{R}^n \) que contiene a \(\alpha(J) \). Entonces

\[
\alpha^* \omega(t) = \left(\sum_{i=1}^n f_i(\alpha(t))\alpha'_i(t) \right) dt.
\]

En efecto, como \(\alpha^* \omega \) es una 1–forma en \(J \), se tiene que \(\alpha^* \omega(t) = B(t)dt \). Debemos encontrar la función \(B \). Tenemos también que

\[
\alpha^*(\omega)(i) = B(t)dt(1) = B(t),
\]

por lo anterior \(\alpha_*(i) = (\alpha'_1(t), \ldots, \alpha'_n(t)) \). Luego

\[
\alpha^* \omega_t(i) = \sum_{j=1}^n f_j(\alpha(t))dx_j(D\alpha(t)(1)) = \sum_{j=1}^n f_j(\alpha(t))\alpha'_j(t),
\]

de donde \(\alpha^* \omega = (\sum_{j=1}^n (f_j \circ \alpha)\alpha'_j)dt \).

3. Sea \(U \subset \mathbb{R}^m \) un conjunto abierto y sea \(\varphi : U \to V \subset \mathbb{R}^n \) una parametrización de clase \(C^k \) \((k \geq 2) \). Sea \(\omega = \sum_{i=1}^n \omega_i dx_i \) una 1–forma en \(V \). Veamos cómo se escribe, explícitamente, la 1–forma \(\varphi^* \omega \).

Sea \(p = \varphi(x) \in V \), donde \(x \in U \). Escribamos \(u = (u_1, \ldots, u_m) \) y \(\varphi = (\varphi_1, \ldots, \varphi_n) \), tenemos que

\[
\varphi^* \omega_x(u) = \sum_{i=1}^n \omega_i(\varphi(x))dx_i(D\varphi(x)u)).
\]
Ahora como,

\[
J\varphi(x)u = \begin{pmatrix}
\frac{\partial \varphi_1}{\partial x_1}(x) & \frac{\partial \varphi_1}{\partial x_2}(x) & \cdots & \frac{\partial \varphi_1}{\partial x_m}(x) \\
\frac{\partial \varphi_2}{\partial x_1}(x) & \frac{\partial \varphi_2}{\partial x_2}(x) & \cdots & \frac{\partial \varphi_2}{\partial x_m}(x) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \varphi_n}{\partial x_1}(x) & \frac{\partial \varphi_n}{\partial x_2}(x) & \cdots & \frac{\partial \varphi_n}{\partial x_m}(x)
\end{pmatrix}
\begin{pmatrix}
u_1 \\ u_2 \\ \vdots \\ u_m
\end{pmatrix}
\]

\[= (\langle \text{grad} \varphi_1(x), u \rangle, \langle \text{grad} \varphi_2(x), u \rangle, \ldots, \langle \text{grad} \varphi_n(x), u \rangle),\]

y \(D\varphi(x)u = J\varphi(x)u\), respecto de las bases canónica, por lo tanto nos queda

\[
\varphi^*\omega_2(u) = \sum_{i=1}^n \omega_i(\varphi(x))dx_i(\langle \text{grad} \varphi_1(x), u \rangle, \ldots, \langle \text{grad} \varphi_n(x), u \rangle)
\]

\[= \sum_{i=1}^n \omega_i(\varphi(x))\langle \text{grad} \varphi_i(x), u \rangle.\]

Por ejemplo, si \(\varphi : U \subset \mathbb{R}^2 \rightarrow V \subset \mathbb{R}^3\) dada por \(\varphi(u, v) = (\varphi_1(u, v), \varphi_2(u, v), \varphi_3(u, v))\) es una parametrización y \(\omega = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz\) es una 1–forma definida en \(V\). Entonces

\[
\varphi^*\omega = A(\varphi_1(u, v), \varphi_2(u, v), \varphi_3(u, v))\frac{\partial \varphi_1}{\partial u}
\]

\[+ B(\varphi_1(u, v), \varphi_2(u, v), \varphi_3(u, v))\frac{\partial \varphi_2}{\partial u}
\]

\[+ C(\varphi_1(u, v), \varphi_2(u, v), \varphi_3(u, v))\frac{\partial \varphi_3}{\partial u}\]
\[\begin{aligned}
+A(\varphi_1(u, v), \varphi_2(u, v), \varphi_3(u, v)) \frac{\partial \varphi_1}{\partial v} \\
+B(\varphi_1(u, v), \varphi_2(u, v), \varphi_3(u, v)) \frac{\partial \varphi_2}{\partial v} \\
+C(\varphi_1(u, v), \varphi_2(u, v), \varphi_3(u, v)) \frac{\partial \varphi_3}{\partial v}.
\end{aligned}\]

Así, si por ejemplo \(\varphi(u, v) = (u^2 + v, 2u - v, u + v^3)\) y \(\omega = (x + y + 1)dx + (2z - y)dy + xdz\), tenemos \(\frac{\partial \varphi_1}{\partial u} = 2u, \frac{\partial \varphi_1}{\partial v} = 1,\)
\(\frac{\partial \varphi_2}{\partial u} = 2, \frac{\partial \varphi_2}{\partial v} = -1, \frac{\partial \varphi_3}{\partial u} = 3u^2, A(\varphi(u, v)) = (u + 1)^2,\)
\(B(\varphi(u, v)) = 2v^3 + v, y \ C(\varphi(u, v)) = u^2 + v.\) Por lo tanto,

\[\begin{aligned}
\varphi^* \omega &= (2u^3 + 4v^3 + 5u^2 + 2u + 3v)du + (3u^2v^2 + v^3 + u^2 + 2u - v + 1)dv.
\end{aligned}\]

El anterior es el cálculo formal. Por otra parte, como \(x(u, v) = u^2 + v, y(u, v) = 2u - v, y z(u, v) = u + v^3\), tenemos \(dx = 2udu + dv, dy = 2du - dv, y dz = du + 3v^2dv\). Ahora, como \(\omega = (x + y + 1)dx + (2z - 1)dy + xdz\), reemplazando nos queda:

\[\begin{aligned}
\varphi^* \omega &= (u^2 + v + 2u - v + 1)(2udu + dv) + (2(u + v^3)
-(2u - v))(2du - dv)) + (u^2 + v)(du + 3v^2dv)
= (2u^3 + 4v^3 + 5u^2 + 2u + 3v)du
+ (3u^2v^2 + v^3 + u^2 + 2u - v + 1)dv.
\end{aligned}\]

Sea \(\varphi(u, v) = (\varphi_1(u, v), \varphi_2(u, v), \varphi_3(u, v))\) como arriba, y sea \(\omega = A(x, y, z)dy \wedge dz + B(x, y, z)dz \wedge dx + C(x, y, x)dx \wedge dy\) una 2–forma
en V. Tenemos que

$$d\varphi_1 = \frac{\partial \varphi_1}{\partial u} du + \frac{\partial \varphi_1}{\partial v} dv$$

$$d\varphi_2 = \frac{\partial \varphi_2}{\partial u} du + \frac{\partial \varphi_2}{\partial v} dv$$

$$d\varphi_3 = \frac{\partial \varphi_3}{\partial u} du + \frac{\partial \varphi_3}{\partial v} dv$$

Entonces $\varphi^* \omega = A(\varphi(u, v)) d\varphi_2 \wedge d\varphi_3 + B(\varphi(u, v)) d\varphi_3 \wedge d\varphi_1 + C(\varphi(u, v)) d\varphi_1 \wedge d\varphi_2$. En efecto, tenemos que

$$\varphi^* \omega = \varphi^*(A(x, y, z) dy \wedge dz) + \varphi^*(B(x, y, z) dz \wedge dx)$$

$$+ \varphi^*(C(x, y, z) dx \wedge dy).$$

Ahora pensamos la 2–forma $A(x, y, z) dy \wedge dz$ como el producto exterior de las dos 1–formas $A(x, y, z) dy$ y dz, es decir, ponemos $A(x, y, z) dy \wedge dz = (A(x, y, z) dy) \wedge dz$ y tenemos $\varphi^*(A(x, y, z) dy \wedge dz) = \varphi^*(A(x, y, z) dy) \wedge \varphi^*(dz)$. Análogamente, $\varphi^*(B(x, y, z) dz \wedge dx) = \varphi^*(B(x, y, z) dz) \wedge \varphi^*(dx)$ y también $\varphi^*(C(x, y, z) dx \wedge dy) = \varphi^*(C(x, y, z) dx) \wedge \varphi^*(dy)$. Finalmente, como $\varphi^*(A(x, y, z) dy \wedge dz) = A(\varphi(u, v)) d\varphi_2 \wedge d\varphi_3$, $\varphi^*(B(x, y, z) dz \wedge dx) = B(\varphi(u, v)) d\varphi_3 \wedge d\varphi_1$, y $\varphi^*(C(x, y, z) dx \wedge dy) = C(\varphi(u, v)) d\varphi_1 \wedge d\varphi_2$, lo que completa la prueba de lo afirmado.

Sean U y V conjuntos abiertos de \mathbb{R}^3 y sea $\varphi : U \to V$ un difeomorfismo local, $\varphi = (\varphi_1, \varphi_2, \varphi_3)$, y $\omega = A(x, y, z) dx \wedge dy \wedge dz$ es una 3–forma en V entonces $\varphi^* \omega = A(\varphi(u, v, w)) d\varphi_1 \wedge d\varphi_2 \wedge d\varphi_3$,
donde

\[d\varphi_1 = \frac{\partial \varphi_1}{\partial u} du + \frac{\partial \varphi_1}{\partial v} dv + \frac{\partial \varphi_1}{\partial w} dw \]

\[d\varphi_2 = \frac{\partial \varphi_2}{\partial u} du + \frac{\partial \varphi_2}{\partial v} dv + \frac{\partial \varphi_2}{\partial w} dw \]

\[d\varphi_3 = \frac{\partial \varphi_3}{\partial u} du + \frac{\partial \varphi_3}{\partial v} dv + \frac{\partial \varphi_3}{\partial w} dw . \]

Por ejemplo, si \(\varphi(r, u, v) = (r \cos(u) \sen(v), r \sen(u) \sen(v), r \cos(v)) \).

Tenemos, \(x = \varphi_1(r, u, v) = r \cos(u) \sen(v), y = \varphi_2(r, u, v) = r \sen(u) \sen(v), y z = \varphi_3(r, u, v) = r \cos(v) \).

Luego

\[d\varphi_1 = \cos(u) \sen(v) dr - r \sen(u) \sen(v) du + r \cos(u) \cos(v) dv \]

\[d\varphi_2 = \sen(u) \sen(v) dr + r \cos(u) \sen(v) du + r \sen(u) \cos(v) dv \]

\[d\varphi_3 = \cos(v) dr + 0 du - r \sen(v) dv . \]

Ahora si \(\omega = (x^2 + y^2 + z^2) dx \wedge dy \wedge dz \) entonces, \(A(\varphi(r, u, v)) = r^2 \cos^2(u) \sen^2(v) + r^2 \sen^2(u) \sen^2(v) + r^2 \cos^2(v) = r^2 \)

\[\varphi^*(dx \wedge dy \wedge dz) = d\varphi_1 \wedge d\varphi_2 \wedge d\varphi_3 \]

\[= (\cos(u) \sen(v) dr - r \sen(u) \sen(v) du + r \cos(u) \cos(v) dv) \]

\[+ (\sen(u) \sen(v) dr + r \cos(u) \sen(v) du + r \sen(u) \cos(v) dv) \]

\[\wedge (\cos(v) dr + 0 du - r \sen(v) dv) \]

\[= (r \cos^2(u) \sen^2(v) dr \wedge du + r \sen(u) \cos(u) \sen(v) cos(v) dr \wedge dv - r \sen(u) \sen^2(v) du \wedge dr - r^2 \sen^2(u) \sen(v) \cos(v) du \wedge dv + r \sen(u) \cos(u) \sen(v) \cos(v) dv \wedge dr + r^2 \cos^2(u) \sen(v) \cos(v) dv \wedge du) \]
\[\wedge (\cos(v)dr - r \sin(v)dv) \]
\[= (r \sin^2(v)dr \wedge du - r^2 \sin(v)) \cos(v)du \wedge dv) \wedge (\cos(v)dr - r \sin(v)dv) \]
\[= -r^2 \sin(v)dr \wedge du \wedge dv. \]

Luego, como \(\varphi^* \omega = \varphi^*(A(x, y, z)dx \wedge dy \wedge dz) = (A \circ \varphi)(r, u, v) \varphi^*(dx \wedge dy \wedge dz) = A(\varphi(r, u, v))d\varphi_1 \wedge d\varphi_2 \wedge d\varphi_3 = r^2(-r^2 \sin(v))dr \wedge du \wedge dv = -r^4 \sin(v)dr \wedge du \wedge du. \]

Tenemos también que

\[
J \varphi(r, u, v) = \begin{pmatrix}
\cos(u) \sin(v) & -r \sin(u) \sin(v) & r \cos(u) \cos(v) \\
\sin(u) \sin(v) & r \cos(u) \sin(v) & r \sin(u) \cos(v) \\
\cos(v) & 0 & -r \sin(v)
\end{pmatrix}
\]

y \(\det J \varphi(r, u, v) = -r^2 \sin(v). \) Vemos entonces que

\[
\varphi^* \omega = A(\varphi(r, u, v)) \det J \varphi(r, u, v) dr \wedge du \wedge dv.
\]

Dejamos a cargo del lector probar que si \(\varphi : U \rightarrow V, \) donde \(U, V \subset \mathbb{R}^m \) son conjuntos abiertos, es un difeomorfismo local de clase \(C^r \) \((r \geq 1) \) y \(\omega = Ady_1 \wedge \cdots \wedge dy_m \) es una \(m \)-forma en \(V \) entonces \(\varphi^* \omega(x_1, \ldots, x_m) = A(\varphi(x_1, \ldots, x_m))dx_1 \wedge \cdots \wedge dx_m. \) Note que hemos usados las coordenadas \((y_1, \ldots, y_m) = (\varphi_1(x_1, \ldots, x_m), \ldots, \varphi_m(x_1, \ldots, x_m)) \) en \(V. \)

11.2 Derivada Exterior

Definiremos ahora un operador de derivación de formas. Primero lo haremos en espacios euclideanos, y en seguida lo trasladaremos a superficies, usando parametrizaciones y la definición en espacios euclideanos.
Consideremos el espacio euclidiano \(\mathbb{R}^m \) o un abierto \(U \subset \mathbb{R}^m \) con la coordenadas canónicas \((x_1, \ldots, x_m) \). Sea \(\{dx_1, \ldots, dx_m\} \) la base de \((\mathbb{R}^m)^* \), dual de la base canónica \(\{e_1, \ldots, e_m\} \) de \(\mathbb{R}^m \). Para mantener la coherencia con lo anterior usaremos la notación \(\frac{\partial}{\partial x_i} = e_i \) para \(i = 1, \ldots, m \). Como ya vimos, si \(\eta \) es una \(k \)-forma diferenciable en \(\mathbb{R}^m \) existen \(\frac{m!}{(m-k)!} \) funciones diferenciables \(\eta_J \), donde \(J = (j_1, \ldots, j_k) \) y \(j_i \in \{1, \ldots, m\} \) \((i = 1, \ldots, k) \), con la propiedad que \(1 \leq j_1 < \cdots < j_k \leq m \) tales que \(\eta = \sum_J \eta_J dx_{j_1} \wedge \cdots \wedge dx_{j_k} \). Vamos a solicitar que el operador derivación que definamos sea lineal, por lo tanto basta definirlo en formas del tipo \(h dx_{j_1} \wedge \cdots \wedge dx_{j_k} \) \((0 \leq k \leq m) \). Si \(\alpha \in \Lambda^{0,r}(\mathbb{R}^m) \) entonces \(\alpha : \mathbb{R}^m \to \mathbb{R} \) y definimos \(d\alpha = \sum_{i=1}^m \frac{\partial \alpha}{\partial x_i} dx_i \). Si \(\alpha = h dx_{j_1} \wedge \cdots \wedge dx_{j_k} \), definimos \(d\alpha = dh \wedge dx_{j_1} \wedge \cdots \wedge dx_{j_k} \). Observamos que es natural tener que \(d(dx_{j_1} \wedge \cdots \wedge dx_{j_k}) = 0 \), pues \(dx_{j_1} \wedge \cdots \wedge dx_{j_k} \) es una \(k \)-forma diferenciable que no depende del punto en cuestión. Exigiendo que \(d \) sea lineal este queda bien definido por las propiedades anteriores.

Ejemplos

1. Sea \(\omega = xyz dx + yzd dy + (x+z) dz \). Entonces \(d\omega = d(xyz) \wedge dx + d(yz) \wedge dy + d(x+z) \wedge dz = (yzdx + zxdx + xdyz) \wedge dx + (zdy + ydz) \wedge dy + (dx+dz) \wedge dz = -zxzdz \wedge dy + (1-zx) dx \wedge dz - ydz \wedge dz \).

2. Sea \(\varphi = xdx - ydy \). Entonces \(d\varphi = dx \wedge dx - dy \wedge dy = 0 \).

3. Sea \(U \subset \mathbb{R}^3 \) un conjunto abierto, y sea \(f : U \to \mathbb{R} \) una función de clase \(C^{r+1} \) \((r \geq 1) \). Consideremos la \(1 \)-forma diferenciable \(\omega \) definida en \(U \) dada por

\[\omega = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz . \]
Claramente \(\omega \) es clase \(C^r \) y se tiene que

\[
d\omega = d \left(\frac{\partial f}{\partial x} \right) \wedge dx + d \left(\frac{\partial f}{\partial y} \right) \wedge dy + d \left(\frac{\partial f}{\partial z} \right) \wedge dz
\]

\[
= \left(\frac{\partial^2 f}{\partial x^2} dx + \frac{\partial^2 f}{\partial y \partial x} dy + \frac{\partial^2 f}{\partial z \partial x} dz \right) \wedge dx
\]

\[
+ \left(\frac{\partial^2 f}{\partial x \partial y} dx + \frac{\partial^2 f}{\partial y^2} dy + \frac{\partial^2 f}{\partial z \partial y} dz \right) \wedge dy
\]

\[
+ \left(\frac{\partial^2 f}{\partial x \partial z} dx + \frac{\partial^2 f}{\partial y \partial z} dy + \frac{\partial^2 f}{\partial z^2} dz \right) \wedge dz
\]

\[
= \left(\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} \right) dx \wedge dy + \left(\frac{\partial^2 f}{\partial x \partial z} - \frac{\partial^2 f}{\partial z \partial x} \right) dx \wedge dz
\]

\[
+ \left(\frac{\partial^2 f}{\partial y \partial z} - \frac{\partial^2 f}{\partial z \partial y} \right) dy \wedge dz.
\]

Ahora como \(f \) es de clase al menos \(C^2 \) se tiene que

\[
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}, \quad \frac{\partial^2 f}{\partial x \partial z} = \frac{\partial^2 f}{\partial z \partial x}, \quad \frac{\partial^2 f}{\partial z \partial y} = \frac{\partial^2 f}{\partial y \partial z},
\]

por lo tanto tenemos que \(d\omega = 0 \). Este ejemplo se generaliza fácilmente a más dimensiones.

Ahora, veamos la relación entre el operador \(d \) que acabamos de definir y el operador \(f^* \) anterior.

Proposición 11.3 Sea \(f : U \to V \) un difeomorfismo entre abiertos de \(\mathbb{R}^m \) y sea \(\omega \) una \(k \)-forma diferenciable en \(V \). Entonces \(f^*(d\omega) = d(f^*(\omega)) \).

Demostración. Para \(k = 0 \), tenemos \(d(f^*\omega) = d(\omega \circ f) = d\omega(f) \circ df = f^*(d\omega) \). Si \(k \geq 1 \), considerando \(\omega \) del tipo \(\omega = h \, dx_{j_1} \wedge \cdots \wedge dx_{j_k} \),
tenemos \(f^*(\omega) = (h \circ f) df_{j_1} \wedge \cdots \wedge df_{j_k}, \) donde \(f = (f_1, \ldots, f_m), \) luego
\[
d(f^*\omega) = d(h \circ f) \wedge df_{j_1} \wedge \cdots \wedge df_{j_k} = f^*(dh) \wedge f^*(dx_{j_1} \wedge \cdots \wedge dx_{j_k}) = f^*(dh \wedge dx_{j_1} \wedge \cdots \wedge dx_{j_k}) = f^*(d\omega). \]
El caso general, se sigue de la linealidad del operador \(d. \)

Ejemplo. Sea \(\varphi : [0, \infty[\times]0, 2\pi[\to \mathbb{R}^2 - \{(x, 0) : x \geq 0\} \) dado por
\[
\varphi(r, \theta) = (r \cos(\theta), r \sin(\theta)).
\]
Tenemos que \(\varphi \) es un difeomorfismo de clase \(C^\infty. \) En \(\mathbb{R}^2 - \{(0, 0)\} \) consideremos la 1-forma de clase \(C^\infty \) dada por
\[
\omega = -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy.
\]
Un cálculo muestra que \(d\omega = 0. \) Ahora
\[
\varphi^*\omega = \varphi^* \left(-\frac{y}{x^2 + y^2} \right) \varphi^* (dx) + \varphi^* \left(\frac{x}{x^2 + y^2} \right) \varphi^* (dy)
\]
\[
= -\frac{\sin(\theta)}{r} \left(\cos(\theta)dr - r \sin(\theta)d\theta \right)
\]
\[
+ \frac{\cos(\theta)}{r} \left(\sin(\theta)dr + r \cos(\theta)d\theta \right)
\]
\[
= d\theta,
\]
es decir, \(\varphi^*\omega = d\theta. \) Luego, \(d\varphi^*\omega = d^2\theta = 0, \) y como \(d\varphi^*\omega = \varphi^*(d\omega), \) claramente se ve que se satisface lo anterior.

Sea \(\omega \in \Lambda^{k,r}(M). \) Definimos \(d\omega \) como la única \((k + 1)-\)forma diferenciable de clase \(C^{r-1} \) en \(M \) tal que para cada parametrización \(\varphi : U_0 \subset \mathbb{R}^m \to U \subset M \) se tiene que \(\varphi^*(d\omega) = d(\varphi^*\omega). \)

Ahora, si \(\varphi : U_0 \subset \mathbb{R}^m \to U \subset M \) y \(\psi : V_0 \subset \mathbb{R}^m \to V \subset M \) son parametrizaciones, con \(U \cap V \neq \emptyset, \) tenemos \(\varphi^*(d\omega) = d(\varphi^*\omega) \in \Lambda^{k+1,r-1}(\varphi^{-1}(U \cap V)) \) y \(\psi^*(d\omega) = d(\psi^*\omega) \in \Lambda^{k+1,r-1}(\psi^{-1}(U \cap V)). \)
Luego, \((\psi^{-1} \circ \varphi)^*d(\psi^*\omega) = d(\psi^{-1} \circ \varphi)^*(\psi^*\omega) = d(\psi \circ (\psi^{-1} \circ \varphi))^*\omega = d\varphi^*\omega\), es decir, \(\varphi^* (\psi^{-1})^*d\psi^*\omega = d\varphi^*\omega\) de donde \((\psi^{-1})^*d\varphi^*\omega = (\varphi^{-1})^*d\varphi^*\omega\), pero \(d\omega = (\varphi^{-1})^*d\varphi^*\omega = (\psi^{-1})^*d\psi^*\omega\). Lo que termina la prueba, y muestra que \(d\) está bien definido.

Proposición 11.4 La siguientes propiedades valen:

1. Si \(\alpha, \beta \in \Lambda^{k,r}(M)\) y \(c_1, c_2 \in \mathbb{R}\) entonces \(d(c_1\alpha + c_2\beta) = c_1d\alpha + c_2d\beta\).

2. Si \(\alpha \in \Lambda^{k,r}(M)\) \((r \geq 2)\). Entonces \(d^2\alpha = d(d\alpha) = 0\).

3. Si \(\alpha \in \Lambda^{k,r}(N)\) y \(f : M \rightarrow N\) es de clase \(C^r\) \((r \geq 1)\) entonces \(f^*(d\alpha) = d(f^*(\alpha))\).

4. Si \(\alpha \in \Lambda^{k,r}(M)\) y \(\beta \in \Lambda^{l,r}(M)\) \((r \geq 1)\). Entonces \(d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k\alpha \wedge d\beta\).

Demostración. Rutinaria a partir de las definiciones y propiedades anteriores, y son dejadas como ejercicio al lector.

Definición 11.5 Decimos que una \(k\)-forma diferenciable de clase \(C^r\) \((r \geq 1)\) es cerrada si \(d\omega = 0\), y decimos que \(\omega\) exacta si existe una \((k-1)\)-forma \(\lambda\) tal que \(\omega = d\lambda\).

Ejemplos

1. Sea \(\omega = 5x^4y^2z^3dx + 2x^5yz^3dy + 3x^5y^2z^2dz\). Entonces \(d\omega = 10x^4y^2z^2dy \wedge dz + 15x^4yz^3dz \wedge dx + 10x^4yz^3dx \wedge dy + 6x^5y^2dy \wedge dz + 15x^4y^2z^2dx \wedge dz + 6x^5yz^3dy \wedge dz = 0\). Además, se tiene que \(\omega = d\lambda\), donde \(\lambda(x, y, z) = x^5y^3z^2\), como se ve fácilmente.
2. Sea \(\omega = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy \), es claro que \(\omega \) está definida en \(\mathbb{R}^2 \setminus \{0\} \) y es de clase \(C^\infty \). Tenemos
\[
\begin{align*}
d\omega &= \frac{y^2 - x^2}{(x^2 + y^2)^2} dy \wedge dx + \frac{y^2 - x^2}{(x^2 + y^2)^2} dx \wedge dy \\
&= \left(\frac{y^2 - x^2}{(x^2 + y^2)^2} - \frac{y^2 - x^2}{(x^2 + y^2)^2} \right) dx \wedge dy = 0.
\end{align*}
\]
Luego, \(\omega \) es cerrada. Afirmamos que \(\omega \) no es exacta.

3. Sea
\[
\omega = \frac{x}{(x^2 + y^2 + z^2)^{3/2}} dy \wedge dz + \frac{y}{(x^2 + y^2 + z^2)^{3/2}} dz \wedge dx + \frac{z}{(x^2 + y^2 + z^2)^{3/2}} dx \wedge dy.
\]
Un cálculo muestra que \(d\omega = 0 \), es decir, \(\omega \) es cerrada, pero afirmamos que \(\omega \) no es exacta.

Proposición 11.5 Cada forma exacta es cerrada.

Demostración Sea \(\omega \in \Lambda^{k,r}(M) \) una \(k \)-forma exacta, entonces \(\omega = d\lambda \) para alguna \(\lambda \in \Lambda^{k-1,r+1}(M) \), luego \(d\omega = d(d\lambda) = 0 \). Lo que completa la prueba.

Definición 11.6 Decimos que un conjunto \(R \subset \mathbb{R}^n \) es conexo por caminos si, para cada par de puntos \(p, q \in R \) existe un camino continuo \(\alpha : [0, 1] \to R \) tal que \(\alpha(0) = p \) y \(\alpha(1) = q \).

El siguiente teorema no es difícil de probar, y se deja a cargo del lector.

Teorema 11.1 Sea \(U \subset \mathbb{R}^n \) un conjunto abierto conexo por caminos. Si \(f : U \to \mathbb{R} \) tiene todas sus derivadas parciales igual a cero en cada punto de \(U \). Entonces \(f \) es una función constante.
Corolario 11.2 Sea $U \subset \mathbb{R}^n$ un conjunto abierto conexo por caminos, y sea $\omega : U \rightarrow \mathbb{R}$ una 0-forma diferenciable cerrada. Entonces ω es constante.

Demostración. Tenemos que,

$$0 = d\omega = \sum_{i=1}^{n} \frac{\partial \omega}{\partial x_i} \, dx_i$$

luego $\frac{\partial \omega}{\partial x_i} = 0$ ($i = 1, \ldots, n$) en todo U, por lo tanto ω es constante, por la proposición anterior.

Definición 11.7 Decimos que un conjunto $R \subset \mathbb{R}^n$ es simplemente conexo si, cada camino $\alpha : [0,1] \rightarrow R$ continuo y cerrado (es decir, $\alpha(0) = \alpha(1)$) puede ser deformado continuamente dentro de R a un punto.

Teorema 11.3 Sea $U \subset \mathbb{R}^n$ un conjunto abierto simplemente conexo. Entonces cada 1-forma en U es exacta.

Proposición 11.6 1. Sean ω y β dos k-formas, con β cerrada. Entonces $d(\omega + \beta) = d\omega$.

2. Si α, β son dos k-formas diferenciables con $d\alpha = d\beta$. Entonces $\beta = \alpha + \gamma$, donde γ es una k-forma cerrada.

Demostración. La parte a) es inmediata.

b) Tenemos que $\beta = \alpha + (\beta - \alpha)$. Sea $\gamma = \beta - \alpha$. Entonces $d\gamma = d\beta - d\alpha = 0$, esto es, γ es cerrada.
11.3 Ejercicios

1. Pruebe todas las afirmaciones dejadas sin prueba, en especial, aquellas a cargo del lector. Pruebe también todas las Proposiciones, Teoremas, Corolarios y Lemas no demostrados en el texto anterior.

2. Calcule la derivada exterior de las siguientes formas diferenciales

 (a) \(\omega = z^2 dx \wedge dy + ((z^2 + 2y)dx \wedge dy) \).

 (b) \(\omega = 13xdx + y^2dy + xyzdz \).

 (c) \(\omega = (x + 2y^3)(dz \wedge dx + dy \wedge dx) \).

 (d) \(\omega = \frac{xdx + ydy}{x^2 + y^2} \), \((x, y) \neq (0, 0) \).

 (e) \(\omega = \frac{ydx - xdy}{x^2 + y^2} \), \((x, y) \neq (0, 0) \).

 (f) \(f dg \), donde \(f, g : \mathbb{R} \to \mathbb{R} \) son aplicaciones de clase \(C^r \) \((r \geq 1) \).

3. Pruebe \(\{dx_1(x), \ldots, dx_m(x)\} \) es una base de \(T_xM^* \).

4. Sean \(\alpha = x^3ydx + ydy \), \(\beta = x^4dx + xdy + z^2dz \) y \(\rho = xyzdz \wedge dx \). Calcular

 (a) \(\alpha \wedge \beta \),

 (b) \(\alpha \wedge \rho \),

 (c) \(\beta \wedge \rho \),

 (d) \(\alpha \wedge \beta \wedge \rho \).

5. Calcule \(dF \), donde la 0-forma \(F(x, y, z) = (x^2 + y^2)/z \) está definida en \(\mathbb{R}^3 - \{z = 0\} \)
6. Sea $A : U \subset \mathbb{R}^3 \to \mathbb{R}$ (U abierto) una 0–forma de clase C^r ($r \geq 1$). Pruebe que
\[dA = \frac{\partial A}{\partial x} \, dx + \frac{\partial A}{\partial y} \, dy + \frac{\partial A}{\partial z} \, dz \]

7. Considere
\[\omega = e^{(x+2y)^2} \, dx + 2e^{(x+2y)^2} \, dy . \]
Muestre que $\omega = df$ para alguna $f : \mathbb{R}^2 \to \mathbb{R}$

8. Sean $F_1, F_2, F_3 : U \subset \mathbb{R}^3 \to \mathbb{R}$ (U abierto) aplicaciones diferenciales. de clase C^k ($k \geq 1$).

 (a) Defina la 1–forma ω por $\omega = F_1 \, dx + F_2 \, dy + F_3 \, dz$. Calcule $d\omega$. Si consideramos $F = (F_1, F_2, F_3) : U \to \mathbb{R}^3$ y definimos $\nabla \times F = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right)$, ¿Cuál es la relación entre $d\omega$ y $\nabla \times F$?

 (b) Defina la 2–forma β por $\beta = F_1 \, dy \wedge dz + F_2 \, dz \wedge dx + F_3 \, dx \wedge dy$. Pruebe que $d\beta = \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \right) \, dx \wedge dy \wedge dz$. Se define la divergencia de la aplicación $F = (F_1, F_2, F_3) : U \to \mathbb{R}^3$ por $\text{div} \, F = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$. Podemos entonces escribir la igualdad anterior como $d\beta = \text{div}(F) \, dx \wedge dy \wedge dz$.

9. Calcule la derivada exterior de las siguientes formas diferenciales

 (a) $z^2 dx \wedge dy + (z^2 + 2y) \, dx \wedge dz$;

 (b) $13xdx + y^2 dy + xyzdz$;

 (c) $\frac{xdx + ydy}{x^2 + y^2}$, definida en $\mathbb{R}^2 - \{(0,0)\}$;

 (d) $\frac{ydx - xdy}{x^2 + y^2}$, definida en $\mathbb{R}^2 - \{(0,0)\}$;
(e) \(f(x^2 + y^2)(xdx + ydy) \), donde \(f : \mathbb{R} \to \mathbb{R} \) es una aplicación de clase \(C^r \) \((r \geq 1)\);

(f) \(fg \) (\(f, g \) son funciones)

10. Sean \(U, V \subset \mathbb{R}^m \) conjuntos abiertos, y sea \(f : U \to V \) una aplicación diferenciable de clase \(C^r \) \((r \geq 1)\), escribamos \((y_1, \ldots, y_m) = (f_1(x_1, \ldots, x_m), \ldots, f_m(x_1, \ldots, x_m)) \), donde \(f = (f_1, \ldots, f_m) \). Sea \(\omega \) la \(m \)-forma \(\omega = dy_1 \wedge \cdots \wedge dy_m \). Pruebe que \(f^* \omega = \det(Df) \, dx_1 \wedge \cdots \wedge dx_m \).

11. Para cada una de las siguientes formas diferenciales \(\omega \) determine si existe una función \(f \) tal que \(\omega = df \). Encuentre \(f \) cuando exista.

(a) \(\omega = (yze^{xy} + 2xyz^2)dx + (xze^{xy} + x^2z^2)dy + (e^{xy} + x^2y^2z^2)dz \).

(b) \(\omega = (\cos(yz) + 2xz)dx + (2yz - xz \sin(yz))dy + (y^2 + x^2 + e^z - xy \sin(yz))dz \).
Formas Diferenciales en Superficies
Capítulo 12

Integración de Fomras Diferenciables

En este capítulo estudiaremos integración de formas diferenciables definidas en superficies, por ejemplo, la integral de 1–formas diferenciales sobre superficies 1–dimensional es la integral de línea del cálculo integral clásico, y la integral de 0–formas diferenciales sobre superficies 2–dimensionales contenidas en el espacio euclidiano tridimensional es la integral de superficies (ver [2], capítulos 5 y 6 o bien [8], capítulo 13). El objetivo final es demostrar los teoremas clásicos del cálculo integral, estos son el Teorema de Stokes, Teorema de Green, y Teorema de Gauss (también llamado Teorema de la Divergencia)

12.1 Integral de k–formas

Comenzamos el estudio de la integral de formas diferenciables, definiendo la integral de 0–formas definidas en superficies de orientadas dimensión 0. Como este tipo de superficies está formada por puntos aislados, a los
cual es asignamos una orientación, basta definirla en el caso más simple
y que corresponde a un punto.

Definición 12.1 Sea \(p \) un punto y sea \(\omega \) una 0–forma definida en
\(p \). La integral de \(\omega \) en \(p \) es

\[
\int_p \omega = \begin{cases}
\omega(p) & \text{si } p \text{ es orientado con } + \\
-\omega(p) & \text{si } p \text{ es orientado con } -
\end{cases}
\]

Para el caso general, simplemente exigimos que la integral sea lineal.

Por ejemplo, si \(M = \{+(6,3,-1)\} \cup \{(1,1,1)\} \) y \(\omega(x,y,z) = x^2 + y^3 - 3z \) entonces \(\int_M \omega = \omega(6,3,-1) - \omega(1,1,1) = (6^2 + 3^3 - 3(-1)) - (1^2 + 1^3 - 3 \cdot 1) = 67 \). Recuerde que en nuestro contexto, \(\{(1,1,1)\} \)
significa que el punto \((1,1,1)\) tiene la orientación \(-\), y no es el punto
\((-1,-1,-1)\).

Proposición 12.1 Sea \(M \) una superficie 0–dimensional orientada, y
sea \(\omega : M \to \mathbb{R} \) una 0–forma. Si denotamos por \(-M\) la superficie \(M \)
con la orientación opuesta. Entonces

\[
\int_{-M} \omega = -\int_M \omega.
\]

Demostración. Trivial.

Ahora extenderemos nuestro concepto de integral a superficies 1–
dimensionales con borde. Sea \(M \subset \mathbb{R}^n \) una superficie en de dimensión
1, con borde. Entonces \(M \) es simplemente una curva. Usando el Teo-
rema del Cambio de Variable, nos es suficiente definir la integral de
1–formas diferenciables definidas sobre curvas que son imagen de una
única parametrización, \(\varphi : [a,b] \subset \mathbb{R} \to \mathbb{R}^n \). Para mantener la co-
herencia, una tal superficie la denotamos por \(C \). Orientamos \(C \) en el
sentido crecientes del parámetro t, es decir, $\varphi'(t)$ es una base positiva de $T_{\varphi(t)}C$.

Definición 12.2 Sea $C \subset \mathbb{R}^n$ una curva orientada, parametrizada por $\varphi : [a, b] \to \mathbb{R}^n$. Sea $\omega : C \to \mathbb{R}$ una 1–forma diferenciable de clase C^r ($r \geq 1$). La integral de ω sobre C es

$$\int_C \omega = \int_a^b \omega(\varphi'(t))dt.$$

Sabemos que podemos escribir una 1–forma diferencial ω en \mathbb{R}^n como $\omega = \sum_{i=1}^{n} \omega_i dx_i$, donde $\omega : C \to \mathbb{R}$ son funciones diferenciables ($i = 1, \ldots, n$), luego

$$\int_C \omega = \int_C \sum_{i=1}^{n} \omega_i dx_i = \sum_{i=1}^{n} \int_C \omega_i dx_i.$$

Por lo tanto, sólo nos basta ver cómo integrar 1–formas diferencial del tipo $\omega_i dx_i$. Llamemos $\beta_i = \omega_i dx_i$. Tenemos que $\beta_i(\varphi'(t)) = \omega_i(\varphi(t))dx_i(\varphi'(t)) = \omega_i(\varphi(t))(\varphi'_1(t), \ldots, \varphi'_n(t)) = \omega_i(\varphi(t))\varphi'_i(t)$, de aquí tenemos entonces que

$$\int_C \omega_i dx_i = \int_C \beta_i = \int_a^b \omega_i(\varphi(t))\varphi'_i(t)dt.$$

Por lo tanto,

$$\int_C \omega = \sum_{i=1}^{n} \omega_i dx_i = \sum_{i=1}^{n} \int_a^b \omega_i(\varphi(t))\varphi'_i(t)dt.$$

Definición 12.3 Sea $c : [a, b] \to \mathbb{R}^n$ una curva. Decimos que c es diferenciable por partes, si c es continua y existe una partición $a = t_0 < t_1 < \cdots < t_k < t_{k+1} = b$ de $[a, b]$ tal que la restricción $c/\lfloor t_j, t_{j+1} \rfloor = c_j$ es diferenciable, $j = 0, \ldots, k$.

Ejemplo. Sea \(c : [-1, 1] \to \mathbb{R}^2 \) dada por \(c(t) = (t, |t|) \). Claramente \(c \) no es diferenciable en \(t = 0 \), pero es de clase \(C^\infty \) por partes, como puede ser fácilmente verificado.

Nota. En esta notas trabajaremos, en general, con curvas y superficies diferenciables, pero es fácil extender los resultados al caso de curvas diferenciables por partes.

Observación. En los textos de cálculo se define la integral de línea de campos vectoriales. Un campo vectorial definido en un abierto \(U \subset \mathbb{R}^n \) es una aplicación \(F : U \to \mathbb{R}^n \). Podemos identificar un campo vectorial \(F \) con la 1–forma \(\omega_F \) definida sobre \(U \) dada por

\[
\omega_F = F_1 dx_1 + \cdots + F_n dx_n,
\]

donde \(F = (F_1, \ldots, F_n) \). Si \(C : [a, b] \to U \) es una curva diferenciable por partes, se define la integral de línea del campo vectorial \(F \) a lo largo de \(C \) por

\[
\int_C F = \int_a^b \sum_{i=1}^n F_i(c(t))c'_i(t) \, dt = \int_a^b < F(c(t)), c'(t) > \, dt.
\]

la cual es obviamente igual a la integral \(\int_C \omega_F \) como fue definida anteriormente.

Ejemplos.

1. Sea \(C \subset \mathbb{R}^3 \) la curva parametrizada por \(\varphi : [1, 3] \to \mathbb{R}^3 \), donde

\[
\varphi(t) = (2t+1, t^2, t^3),
\]

y sea \(\omega(x, y, z) = (3x-1)^2 dx + 5zdy + 2dz \). Tenemos \(x = \varphi_1(t) = 2t+1 \), \(y = \varphi_2(t) = t^2 \), \(z = \varphi_3(t) = t^3 \),

\[
\omega_1(x, y, z) = (3x-1)^2, \quad \omega_2(x, y, z) = 5z, \quad \omega_3(x, y, z) = 2.
\]

Luego,

\[
\int_C \omega = \int_1^3 (\omega_1(\varphi(t))\varphi_1'(t) + \omega_2(\varphi(t))\varphi_2'(t) + \omega_3(\varphi(t))\varphi_3'(t))dt = \int_1^3 10t^4 + 78t^2 + 48t + 8 \, dt = 1268.
\]

Sea \(U \subset \mathbb{R}^n \) un conjunto abierto. Si \(c : [a, b] \to U \subset \mathbb{R}^n \) es una curva diferenciable por partes y \(a = t_0 < t_1 < \cdots < t_k < t_{k+1} = b \) es una
partición de \([a, b]\) tal que las restricciones \(c_j = c/\left[t_j, t_{j+1}\right]\) \((j = 0, \ldots, k)\) son diferenciables (obviamente suponemos que la partición es la mínima que satisface la condición). Sea \(\omega\) una 1–forma definida en \(U\). Entonces en cada intervalo \([t_j, t_{j+1}]\) tenemos la 1–forma \(c_j^*\omega\), la cual es dada por

\[
c_j^*\omega = \sum_{i=1}^{n} a_i(x_1(t), \ldots, x_n(t)) \frac{dx_i}{dt} dt,
\]

donde \(c(t) = (x_1(t), \ldots, x_n(t))\). Se define entonces

\[
\int_C \omega = \sum_{j=0}^{k} \int_{t_j}^{t_{j+1}} c_j^*\omega = \int_a^b \left(\sum_{i=1}^{n} a_i(t) \frac{dx_i}{dt} \right) dt.
\]

Recordemos que un cambio de parámetro de \(c : [a, b] \to \mathbb{R}^n\) es un difeomorfismo \(\varphi : [c, d] \to [a, b]\). Decimos que \(\varphi\) preserva orientación si es creciente, si no decimos que invierte orientación. Supongamos que \(\varphi\) es creciente (si no, hay que hacer el adecuado cambio de signo), y sea \(t = \varphi(\tau)\). Entonces

\[
\int_C \omega = \int_a^b \left(\sum_{i=1}^{n} a_i(t) \frac{dx_i}{dt} \right) dt
= \int_a^b \left(\sum_{i=1}^{n} a_i(\varphi(\tau)) \frac{dx_i}{d\tau} \frac{d\tau}{dt} \right) dt
= \int_c^d \left(\sum_{i=1}^{n} a_i(\tau) \frac{dx_i}{d\tau} \right) d\tau
= \int_{\tilde{C}} \omega,
\]

donde \(\tilde{C}\) es la curva \(C\) parametrizada por \(\tau\).

Desde las propiedades de la integral para funciones de variable real a valores reales se sigue la siguiente proposición
Proposición 12.2 Sea \(C \subset \mathbb{R}^n \) una curva orientada, y sea \(k \) un número real, y sean \(\omega, \alpha : C \to \mathbb{R} \) dos 1–formas de clase \(C^r \) \((r \geq 1)\). Entonces

1. \[
\int_C k\omega + \alpha = k \int_C \omega + \int_C \alpha .
\]

2. Si \(-C\) representa la curva \(C\) con la orientación opuesta, entonces

\[
\int_{-C} \omega = - \int_C \omega .
\]

Demostración. Inmediata desde la definición.

Sea \(U \subset \mathbb{R}^n \) un conjunto abierto, y sea \(\omega \) una 1–forma definida en \(U \). Recordemos que una forma \(\omega \) es cerrada si \(d\omega = 0 \), y que \(\omega \) es exacta si existe una función \(f : U \to \mathbb{R} \) tal que \(\omega = df \).

Ahora si \(\omega \) es exacta en \(U \) y \(c : [a, b] \to U \) es una curva diferenciable, entonces

\[
\int_C \omega = \int_C df = \int_a^b c^*(df) = f(c(b)) - f(c(a)),
\]

es decir, el valor de \(\int_C \omega \) depende sólo de los puntos extremos de la curva \(C \). De esto se sigue que si \(\omega \) es exacta en \(U \) y \(C \) es una curva cerrada (es decir, \(c(a) = c(b) \)) en \(U \) entonces

\[
\int_C \omega = 0 .
\]

Sea \(\omega = \sum_{i=1}^n a_i dx_i \) una 1–forma definida en un conjunto abierto \(U \subset \mathbb{R}^n \). Tenemos la siguiente proposición.

Proposición 12.3 Son equivalentes:

1. \(\omega \) es exacta en un subconjunto abierto conexo \(V \subset U \),
2. El valor de $\int_C \omega$ depende sólo de la curva C, para toda curva C contenida en V.

3. $\int_C \omega = 0$ para toda curva cerrada C contenida en V.

Nota. Una curva C contenida en V significa que C es la imagen de $c : [a, b] \to \mathbb{R}^n$ tal que $c(t) \in V$ para todo $t \in [a, b]$.

Demostración. Ya hemos probado que (1) implica (2) y que (2) implica (3).

Ahora, la prueba que (3) implica (2) es inmediata, por lo tanto sólo nos resta probar que (2) implica (1).

(2) implica (1). Fijemos un punto $p \in V$. Dado $x \in V$, sea C una curva diferenciable por partes uniendo p y x. Definamos $f : V \to \mathbb{R}$ por $f(x) = \int_C \omega$. Por (2), f está bien definida. Afirmamos que $df = \omega$, lo cual terminaría la prueba.

Como $df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i$, debemos probar que $\frac{\partial f}{\partial x_i}(x) = a_i(x)$ ($i = 1, \ldots, n$). Sea e_i el i-ésimo vector canónico de \mathbb{R}^n, y consideremos la curva $c_i : [-\varepsilon, \varepsilon] \to V$, dada por $c_i(t) = x + te_i$, uniendo x con $x + te_i$.

Entonces

$$\frac{\partial f}{\partial x_i}(x) = \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t}$$

$$= \lim_{t \to 0} \frac{1}{t} \left(\int_{c+e_i} \omega - \int_c \omega \right)$$

$$= \lim_{t \to 0} \frac{1}{t} \int_{c_i} \omega$$

$$= \frac{1}{t} \int_0^t a_i(s) \, ds = a_i(0) = a_i(x).$$

Lo que termina la prueba de lo afirmado.
Ejemplo. Consideremos la 1–forma

\[\omega_0 = -\frac{y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy \]

definida en \(\mathbb{R}^2 - \{(0,0)\} \). Tenemos que \(d\omega_0 = 0 \), pero \(\omega_0 \) no es exacta. ¿por qué?

Para superficies \(m \)--dimensionales con borde, \(M^m \), la definición de la integral de una \(m \)--forma diferenciable puede ser hecha primero definiendo ésta en el caso que \(M^m \) es imagen de una única parametrización y después la extendemos al caso general.

Sea \(M^m \subset \mathbb{R}^n \) una superficie \(m \)--dimensional con borde, imagen de una única parametrización \(\varphi : U_0 \subset \mathbb{R}^m \rightarrow M \). Sea \(\omega : M \rightarrow \mathbb{R} \) una \(m \)--forma diferenciable de clase \(C^r \) \((r \geq 1) \), entonces podemos escribir \(\omega = (f \circ \varphi)(x_1, \ldots, x_m)dx_1 \wedge \cdots \wedge dx_m \), donde \(f : M \rightarrow \mathbb{R} \) es una función de clase \(C^r \).

Definición 12.4 La integral de \(\omega \) sobre \(M \) es

\[\int_M \omega = \int_{U_0} (f \circ \varphi)(x_1, \ldots, x_m)dx_1 \cdots dx_m. \]

Ahora demostraremos que la definición arriba no depende de la elección de la parametrización.

Proposición 12.4 Sea \(M^m \subset \mathbb{R}^n \) una superficie orientada. Sean \(\varphi : U_0 \subset \mathbb{R}^m \rightarrow U \subset M \) y \(\psi : V_0 \subset \mathbb{R}^m \rightarrow U \) parametrizaciones positiva de \(U \), y sea \(\omega : U \rightarrow \mathbb{R} \) una \(m \)--forma diferenciable de clase \(C^r \) \((r \geq 1) \), \(\omega = f dx_1 \wedge \cdots \wedge dx_m \). Entonces

\[\int_U \omega = \int_{U_0} (f \circ \varphi)dx_1 \cdots dx_m = \int_{V_0} (f \circ \psi)dx_1 \cdots dx_m. \]
Demostración. Considerando el cambio de coordenadas $\xi = \psi^{-1} \circ \varphi : U_0 \rightarrow V_0$, y escribamos $x_i = \xi_i(y_1, \ldots, y_m)$ ($i = 1, \ldots, m$), donde tenemos las coordenadas (x_1, \ldots, x_m) en U_0 y (y_1, \ldots, y_m) en V_0.

Denotemos por ω_φ y ω_ψ la representación de ω en U_0 y V_0, respectivamente, es decir, $\omega_\varphi = \varphi^* \omega$ y $\omega_\psi = \psi^* \omega$. Entonces $\xi^* \omega_\varphi = (\varphi^{-1} \circ \psi)^* \omega_\varphi = \psi \circ (\varphi^{-1})^* \varphi^* \omega = \psi^* \omega = \omega_\psi$. Además tenemos que

\[\omega_\psi = \det(D\xi)(f \circ \psi) \, dy_1 \wedge \cdots \wedge dy_m. \]

Ahora, $(f \circ \psi)(y_1, \ldots, y_m) = (f \circ \varphi) \circ (\varphi^{-1} \circ \psi)(y_1, \ldots, y_m) = (f \circ \varphi)(\xi(y_1, \ldots, y_m)) = (f \circ \varphi)(x_1, \ldots, x_m)$, y por el Teorema del Cambio de Variable para integrales múltiples, obtenemos que

\[\int_{U_0} (f \circ \varphi) \, dx_1 \cdots dx_m = \int_{V_0} |\det(D\xi)|(f \circ \psi) \, dy_1 \cdots dy_m \]

y como $\det(D\xi) > 0$, se tiene que el resultado.

12.2 Teorema de Stokes

Sea U un conjunto abierto de \mathbb{R}^n o de una superficie M, y sea $\omega : U \subset \rightarrow \mathbb{R}$ una forma diferenciable de clase C^r ($r \geq 1$). El soporte de ω es el conjunto $\text{sop}(\omega) = \text{clausura} \{p \in U : \omega(p) \neq 0\}$. Es claro que $\text{sop}(\omega)$ es un conjunto cerrado en \mathbb{R}^n o en M, según corresponda.

Sea $\omega : U \rightarrow \mathbb{R}$ una n-forma diferenciable entonces podemos escribir $\omega = a(x_1, \ldots, x_n) \, dx_1 \wedge \cdots \wedge dx_n$. Supongamos que $\text{sop}(\omega)$ es un conjunto compacto y está contenido en U. Definimos

\[\int_U \omega = \int_{\text{sop}(\omega)} a(x_1, \ldots, x_n) \, dx_1 \cdots dx_n. \]

Si M es una superficie, en lo que sigue, por simplicidad vamos a suponer que M es compacta.
Como sop(\(\omega\)) \(\subset M\) es cerrado, se sigue que este es compacto. Suponemos también que \(M\) es orientable y que tenemos fijada una orientación en ella.

Ahora, sea \(\varphi : U_\alpha \subset \mathbb{R}^n \to V_\alpha \subset M\) es una parametrización. Si sop(\(\omega\)) \(\subset V_\alpha = \varphi(U_\alpha)\) entonces, localmente, \(\omega\) se escribe como \(\omega_\alpha = a_\alpha(u_1, \ldots, u_n)du_1 \wedge \cdots \wedge du_n\), y definimos

\[
\int_M \omega = \int_{V_\alpha} \omega_\alpha = \int_{U_\alpha} a_\alpha(u_1, \ldots, u_n)du_1 \cdots du_n .
\]

Si sop(\(\omega\)) \(\subset V_\beta = \varphi_\beta(U_\beta)\). Entonces el valor de la integral es el mismo que cuando se calcula usando la parametrización \(\varphi_\beta\), esto es consecuencia inmediata del Teorema del Cambio de Variable anterior.

La elección de la orientación de \(M\) sirve para que no haya cambios en el signo de la integral al trabajar con diferentes parametrizaciones.

Si sop(\(\omega\)) no está contenido en la imagen de una parametrización, consideramos el cubrimiento abierto \(\{V_\alpha : \alpha \in \Gamma\}\) de \(M\) por vecindades parametrizadas, y sea \(\Phi = \{\psi_\alpha\}\) una partición de la unidad subordinada a este cubrimiento, es decir, sop(\(\psi_\alpha \omega\)) \(\subset V_\alpha\). Definimos entonces

\[
\int_M \omega = \sum_{\alpha=1}^{k} \int_{M} \varphi_\alpha \omega .
\]

Como antes, se prueba que esta definición no depende de la partición de la unidad usada para calcular la integral.

Teorema 12.1 (Stokes). Sea \(M^m\) una superficie de clase \(C^r (r \geq 1)\), compacta, orientada y con borde \(\partial M\) dotado de la orientación inducida. Sea \(\omega\) una \((m-1)\)-forma diferenciable sobre \(M\) y sea \(d\omega\) su derivada exterior. Denotemos por \(i^*\omega\) la restricción de \(\omega\) a \(\partial M\), donde \(i : \partial M \to M\) es la aplicación inclusión. Entonces

\[
\int_{\partial M} i^*\omega = \int_{M} d\omega .
\]
Demostración. Sea $K = \text{sop}(\omega)$. Consideremos los siguientes casos:

a) K está contenido en un abierto $V = \varphi(U)$, donde $\varphi : U \subset \mathbb{R}^m \to V \subset M$ es una parametrización.

En V la forma ω puede ser escrita como

$$\omega = \sum_{j=1}^{m} a_j(u_1, \ldots, u_m) \, du_1 \wedge \cdots \wedge du_{j-1} \wedge du_{j+1} \wedge \cdots \wedge du_m,$$

donde $a_j : U \to \mathbb{R}$ son funciones diferenciables ($j = 1, \ldots, m$). Luego

$$d\omega = \left(\sum_{j=1}^{m} (-1)^{j-1} \frac{\partial a_j}{\partial u_j} \right) du_1 \wedge \cdots \wedge du_m.$$

Si $\varphi(U) \cap \partial M = \emptyset$. Entonces $\omega = 0$ en los puntos de ∂M e $i^*w = 0$,

de donde

$$\int_{\partial M} i^*\omega = 0.$$

Ahora debemos probar que

$$\int_M d\omega = \int_U \sum_{j=1}^{m} (-1)^{j-1} \frac{\partial a_j}{\partial u_j} du_1 \cdots du_m = 0.$$

Para esto, extendemos las funciones a_j a \mathbb{H}^m definiendo

$$a_j(u_1, \ldots, u_m) = \begin{cases} a_j(u_1, \ldots, u_m) & \text{si } (u_1, \ldots, u_m) \in U \\ 0 & \text{si } (u_1, \ldots, u_m) \in \mathbb{H}^m - U \end{cases}$$

Como $\varphi^{-1}(K) \subset U$, las funciones a_j así definidas son diferenciables en \mathbb{H}^m. Consideremos ahora el cubo $Q \subset \mathbb{H}^m$ dado por $u_j^0 < u_j < u_j^1$, $j = 1, \ldots, m$ y que contiene a $\varphi^{-1}(K)$ en su interior. Entonces
\[
\int_U \sum_{j=1}^{m} (-1)^{j-1} \frac{\partial a_j}{\partial u_j} \, du_1 \cdots du_m = \sum_{j=1}^{m} (-1)^{j-1} \int_Q \frac{\partial a_j}{\partial u_j} \, du_1 \cdots du_m
\]

\[
= \sum_{j=1}^{m} (-1)^{j-1} \int_Q a_j(u_1, \ldots, u_{j-1}, u_j^0, u_{j+1}, \ldots, u_m) \, du_1 \cdots du_{j-1} du_{j+1} \cdots du_m
\]

\[
- a_j(u_1, \ldots, u_{j-1}, u_j^1, u_{j+1}, \ldots, u_m) \, du_1 \cdots du_{j-1} du_{j+1} \cdots du_m = 0
\]

pues \(a_j(u_1, \ldots, u_{j-1}, u_j^1, \ldots, u_m) = a_j(u_1, \ldots, u_j^1, \ldots, u_m) = 0\) para todo \(j = 1, \ldots, m\).

Si \(\varphi(U) \cap \partial M \neq \emptyset\). Entonces la aplicación \(i\) se escribe como

\[
i = \begin{cases}
 u_1 = 0 \\
u_j = u_j, & j = 2, \ldots, m
\end{cases}
\]

y usando la orientación inducida en el borde \(i^* \omega = a_1(0, u_2, \ldots, u_m) \, du_2 \wedge \cdots \wedge du_m\), como antes extendemos las funciones \(a_j\) por

\[
a_j(u_1, \ldots, u_m) = \begin{cases}
a_j(u_1, \ldots, u_m) & \text{si } (u_1, \ldots, u_m) \in U \\
0 & \text{si } (u_1, \ldots, u_m) \in \mathbb{H}^m - U
\end{cases}
\]

las funciones \(a_j\) así definidas son de clase \(C^r\) en \(\mathbb{H}^m\). Consideremos ahora el cubo dado por \(u_j^1 \leq u_j \leq 0, u_j^1 \leq u_j \leq u_j^0 \quad (j = 2, \ldots, m)\) y tal que la unión del interior de \(Q\) con el hiperplano \(u_1 = 0\) contenga a \(\varphi^{-1}(K)\). Entonces

\[
\int_M d\omega = \sum_{j=1}^{m} (-1)^{j-1} \int_Q \frac{\partial a_j}{\partial u_j} \, du_1 \cdots du_m
\]
Ahora, como \(a_j(u_1, \ldots, u^0_j, \ldots, u_m) = a_j(u_1, \ldots, u^1_j, \ldots, u_m) = 0\), y \(a_1(u_1^1, u_2, \ldots, u_m) = 0\), tenemos que

\[
\int_M d\omega = \int_Q a_1(0, u_2, \ldots, u_m)du_2 \cdots du_m = \int_{\partial M} i^* \omega.
\]

Para el caso general, sea \(\{V_\alpha\}\) un cubrimiento abierto de \(M\) por vecindades parametrizadas, sea \(\{\psi_1, \ldots, \psi_\ell\}\) una partición de la unidad subordinada al cubrimiento \(\{V_\alpha\}\). Las formas diferenciales \(\omega_j = \psi_j \omega\), con \(j = 1, \ldots, \ell\) satisfacen las condiciones anteriores. Además, como

\[
\sum_{j=1}^\ell d\omega = 0,
\]

tenemos \(\sum_{j=1}^\ell \omega_j = \omega\) y \(\sum_{j=1}^\ell d \omega_j = d\omega\). Luego,

\[
\int_M d\omega = \sum_{j=1}^\ell \int_M d\omega = \sum_{j=1}^\ell \int_{\partial M} i^* \omega_j = \int_{\partial M} \sum_{j=1}^\ell i^* \omega_j = \int_{\partial M} i^* \omega.
\]

Lo que termina la prueba del teorema.
El Teorema de Stokes puede ser reformulado de la siguiente manera.

Teorema 12.2 Sea M una superficie compacta orientada con borde ∂M (posiblemente vacío) orientado con la orientación inducida por la orientación de M. Sea ω una $(m-1)$-forma diferenciable de clase C^r ($r \geq 1$). Entonces

$$\int_M d\omega = \int_{\partial M} \omega.$$

Del teorema anterior tenemos los siguientes corolarios.

Corolario 12.3 Sea M^m una superficie orientada cerrada (es decir, $\partial M = \emptyset$) y sea $\omega : M \to \mathbb{R}$ una m-forma exacta. Entonces

$$\int_M \omega = 0.$$

Demostración. Como ω es exacta, se tiene que $\omega = d\alpha$, donde α es una $(m-1)$-forma. Entonces

$$\int_M \omega = \int_M d\alpha = \int_{\partial M} \alpha = 0.$$

Corolario 12.4 Sea M^m una superficie orientada, con borde, y sea $\omega : M \to \mathbb{R}$ una m-forma cerrada ($d\omega = 0$). Entonces

$$\int_{\partial M} \omega = 0.$$

Demostración. Tenemos que

$$\int_{\partial M} \omega = \int_M d\omega = 0.$$

12.2.1 **Teorema de Green y Teorema de Gauss**

En esta sección probaremos dos resultados clásicos, que son el Teorema de Green y el Teorema de Gauss.
Teorema 12.5 (Green) Sea $M \subset \mathbb{R}^2$ un superficie 2–dimensional con borde, y sean $P, Q : M \to \mathbb{R}$ funciones diferenciables. Entonces

$$\int_{\partial M} P \, dx + Q \, dy = \int \int_M \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy .$$

Nota. La superficie M es considerada con la orientación usual y ∂M tiene la orientación inducida.

Demostración. Sea $\omega = P \, dx + Q \, dy$. Tenemos que ω es una 1–forma diferenciable, y por el Teorema de Stokes

$$\int_M d\omega = \int_{\partial M} \omega .$$

Ahora,

$$d\omega = dP \land dx + dQ \land dy$$

$$= \left(\frac{\partial P}{\partial x} \, dx + \frac{\partial P}{\partial y} \, dy \right) \land dx + \left(\frac{\partial Q}{\partial x} \, dx + \frac{\partial Q}{\partial y} \, dy \right) \land dy$$

$$= \left(\frac{\partial P}{\partial x} \, dx \land dx + \frac{\partial P}{\partial y} \, dy \land dx + \frac{\partial Q}{\partial x} \, dx \land dy + \frac{\partial Q}{\partial y} \, dy \land dy \right)$$

$$= - \frac{\partial P}{\partial y} \, dx \land dy + \frac{\partial Q}{\partial x} \, dx \land dy ,$$

esto es, $d\omega = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \land dy$. Reemplazando esto en la fórmula dada por el Teorema de Stokes obtenemos el resultado.

Nota. Sea V espacio vectorial real de dimensión m. Denotemos por $\mathcal{L}_k(V, \mathbb{R})$ el espacio vectorial de las aplicaciones k–lineales $L : V^k \to \mathbb{R}$ ($V^k = V \times \cdots \times V$, k factores). Recordemos que $T \in \mathcal{L}_k(V, \mathbb{R})$ es alternada si, $T(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_k) = -T(v_1, \ldots, v_j, \ldots, v_i, \ldots, v_k)$. Denotemos por $\Lambda^k(V) = \{ L \in \mathcal{L}_k(V, \mathbb{R}) : L \ \text{alternada} \}$. Es fácil ver que $\Lambda^k(V)$ es un subespacio vectorial de $\mathcal{L}_k(V, \mathbb{R})$ y que $\dim \Lambda^k(V) =$
Integración de Formas Diferenciales

\[
\frac{m!}{k!(m-k)!}.
\]

Si \(V \) es un espacio vectorial orientado, y si \(\{v_1, \ldots, v_m\} \) es una base ortonormal de \(V \) determinando su orientación. Entonces existe una única \(\omega \in \Lambda^k(V) \) tal que \(\omega(v_1, \ldots, v_m) = 1 \). Esta \(m \)-forma lineal es llamado elemento de volumen de \(V \).

Ahora, si \(M \subset \mathbb{R}^n \) es una superficie \(m \)-dimensional de clase \(C^r \) (\(r \geq 1 \)) orientada (con o sin borde). Como \(\Lambda^m(T_x M) \) tiene dimensión 1, para cada \(x \in M \) existe una única \(m \)-forma \(\text{vol} : M \to \mathbb{R} \) tal que \(\text{vol}_x(v_1(x), \ldots, v_m(x)) = 1 \) para cada base ortonormal \(\{v_1(x), \ldots, v_m(x)\} \) de \(T_x M \) determinando su orientación. La forma \(\text{vol} \) es llamada forma de volumen de \(M \).

Si \(M \subset \mathbb{R}^m \) una superficie \(m \)-dimensional compacta, y si \(\text{vol} \) es su forma de volumen, entonces se tiene que

\[
\int_M \text{vol} = \int_M dx_1 \cdots dx_m = \text{vol}(M).
\]

Si \(\dim M = 2 \), la forma de volumen correspondiente es denotada por \(dA \), y es llamada forma de área (no es la diferencial de \(A \), es sólo una notación).

Sea \(M \subset \mathbb{R}^3 \) es una superficie 3-dimensionales con borde, \(\partial M \), y sea \(n(x) \) el vector unitario normal a \(T_x \partial M \). Orientamos \(\partial M \) de modo que \(n(x) \) apunte hacia afuera de \(M \). Tenemos entonces que

\[
dA = n_1 dy \wedge dz + n_2 dz \wedge dx + n_3 dx \wedge dy.
\]

Además, \(n_1 dA = dy \wedge dz \), \(n_2 dA = dz \wedge dx \), y \(n_3 dA = dx \wedge dy \).

Teorema 12.6 (Gauss) Sea \(M \subset \mathbb{R}^3 \) una superficie 3-dimensionales compacta con borde, orientada por su vector normal unitario, \(n = (n_1, n_2, n_3) \), en \(\partial M \). Sea \(F : M \to \mathbb{R}^3 \) una aplicación diferenciable. Entonces

\[
\int_M \text{div}(F)dV = \int_{\partial M} < F, n > dA.
\]
Observación. Esta ecuación se escribe como sigue:

\[\int \int \int_M \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \right) dx dy dz = \int_{\partial M} (n_1 F_1 + n_2 F_2 + n_3 F_3) dA. \]

Demostración. Definamos la 2-forma \(\omega \) sobre \(M \) por

\[\omega = F_1 dy \wedge dz + F_2 dz \wedge dx + F_3 dx \wedge dy. \]

Tenemos que \(\omega \) es diferenciable, y

\[d\omega = dF_1 \wedge dy \wedge dz + dF_2 \wedge dz \wedge dx + dF_3 \wedge dx \wedge dy. \]

Por otra parte,

\[n_1 dA = dy \wedge dz \]

\[n_2 dA = dz \wedge dx \]

\[n_3 dA = dx \wedge dy \]
Así,

\[
<F, n > dA = F_1 n_1 dA + F_2 n_2 dA + F_3 n_3 dA
\]
\[
= F_1 dy \wedge dz + F_2 dz \wedge dx + F_3 dx \wedge dy
\]
\[
= \omega.
\]

Luego, por el Teorema de Stokes, reemplazando se obtiene el resultado.

12.3 Ejercicios

1. Sea \(M^m \subset \mathbb{R}^n\) superficie orientada con borde, y sea \(\omega\) una \(m\)-forma en \(M\), con \(\text{sup}(\omega)\) compacto. Designe por \(-M\) la superficie \(M\) con la orientación opuesta. Demuestre que \(\int_{-M} \omega = - \int_M \omega\).

2. (a) Sea \(f(x, y, z) = (2xy, 3z^2, x^2, 9xz^2)\). Calcule \(\int_C F \cdot dr\), donde \(C\) es cualquier curva comenzando en \((2, 1, 1)\) y terminando en \((5, 0, 0)\).

(b) ¿Para qué valores de \(a\) y \(b\) se tiene que \(F(x, y, z) = (bxz + 2y, bx + 2ayz, y^2 + ax^2)\) es el gradiente de una función \(f\), es decir, \(F = \text{grad} f\) ?

(c) Calcule \(\int_C F \cdot dr\), donde \(F(x, y) = (-y^2, x^2)\) y \(C\) es parametrizada por \(r(t) = (\cos(t), \sin(t))\), con \(0 \leq t \leq 2\pi\).

(d) Calcule \(\int_C F \cdot dr\), donde \(C\) es la curva parametrizada por \(r(t) = (e^t \sin(t), e^t \cos(t))\), con \(0 \leq t \leq \pi\) y \(F(x, y) = (-3 + 2xy, x^2 - 3y^2)\).

(e) Calcule \(\int_C zdx + y^2dy + xyzdz\), donde \(C\) es parametrizada por \(r(t) = (1, 2t, t^2)\), con \(0 \leq t \leq 1\).
3. Calcule \(\int_C x^4dx + xydy \), donde \(C \) es la curva consistiendo de los segmentos de línea desde (0, 0) a (1, 0), desde (1, 0) a (0, 1), y desde (0, 1) a (0, 0), directamente y usando el teorema de Green.

4. Calcule \(\int_S x+y+z\,dS \), donde \(S \) es la porción del plano \(x+y = 1 \) en el primer octante, donde \(0 \leq z \leq 1 \).

5. Calcule \(\int_C F(x,y)\cdot dr \), donde \(F(x,y) = (2xy, x^2) \) y \(C \) es la curva borde del cuadrado \([0,1] \times [0,1] \), directamente y usando el teorema de Green.

6. Sea \(S \) la parte de la gráfica de la función \(f(x,y) = y^2 - x^2 + 1 \), para \(x^2 + y^2 \leq 1 \). Oriente \(S \) por el vector normal unitario \(n \) que tiene su tercera coordenada positiva.

 (a) Construya una parametrización \(\varphi(u,v) \) para \(S \) y exprese \(n \) en términos de \(\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \).

 (b) Sea \(F(x,y,z) = (0, xz, 0) \). Calcule \(\int_S \text{rot}(F) \cdot ndS \).

7. Calcule \(\int_S F \cdot dS \), donde \(F(x,y,z) = (x^2, y^2z, z^3) \) y \(S \) es la superficie del cubo \([1,2] \times [-1,1] \times [0,1] \) y la orientación está dada por el vector normal unitario que apunta hacia afuera.

8. Sea \(\omega = (x_2 + x_3 - 2x_1x_2)dx_2 \wedge dx_3 \wedge dx_4 + (x_2^2 + e^{x_3} - x_4)dx_3 \wedge dx_4 \wedge dx_1 \). ¿Existe una forma \(\eta \) tal que \(d\eta = \omega \) ? (justifique su respuesta?)

9. Calcule \(\int_S \text{rot}(F) \cdot dS \), donde \(F(x,y,z) = (z^3x - y, z^3y, x^3y + y^3x) \) y \(S \) es la parte de la superficie \(z = 9 - x^2 - y^2 \) por sobre el plano \(xy \).
10. Calcule la integral
\[
\int_C (2x - y) \, dx + (x + 3y) \, dy
\]
sobre el camino

(a) \(C : \) eje \(X \) de \(x = 0 \) a \(x = 5 \).

(b) \(C : \) eje \(Y \) de \(y = 0 \) a \(y = 2 \).

(c) \(C : \) segmento de \((0,0)\) a \((3,0)\) y de \((3,0)\) a \((3,3)\).

(d) \(C : \) segmento de \((0,0)\) a \((0,-3)\) y de \((0,-3)\) a \((2,-3)\).

(e) \(C : \) camino parabólico \(x = t , y = 2t^2 \), de \((0,0)\) a \((2,8)\).

(f) \(C : \) camino elíptico \(x = 4 \, \text{sen}(t) \), \(y = 3 \, \text{cos}(t) \), de \((0,3)\) a \((4,0)\).

11. Sea \(c : [a,b] \to M \) una curva de clase \(C^1 \) en una superficie \(M^m \). Sean \(c(a) = p \), \(c(b) = q \). Pruebe que si \(f : M \to \mathbb{R} \) es diferenciable y \(\omega = df \) entonces
\[
\int_a^b c^* \omega = f(q) - f(p) \, .
\]

12. Sea \(T(u,v) = (4u, 2u + 3v) \). Sea \(D^* \) el rectángulo \([0,1] \times [1,2]\). Encuentre \(D = T(D^*) \) y calcule
\[
\int_D x y dxdy .
\]

13. Calcule
\[
\int_{\Omega} z^3 dxdydz , \text{ donde } \Omega = \{ (x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 2az \}, \, a > 0 .
\]

14. Calcule el área de la superficie \(S \) parametrizada por \(\Phi : [0,1] \times [0,v/2] \to \mathbb{R}^3 \), con \(\Phi(u,v) = (e^u \text{cos}(v), e^u \text{sen}(v), v) \).

15. Sea \(S \) el borde del paralelepípedo \([-2,2] \times [-1,1] \times [-3,3] \), y sea \(G(x,y,z) = (x^3, 3z, 2y) \). Calcule
\[
\int_S G \cdot dS .
\]
16. Calcule $\int_S \nabla \times F \cdot dS$, donde $F(x, y, z) = (x, y, 0)$ y S es la superficie definida por la ecuación $x^2 + y^2 + (z - 3)^2 = 1$, para $z \geq 3$.

17. Sea $F(x, y) = (e^x \cos(3y), 3e^x \sen(3y))$.

 (a) Encuentre f tal que $\text{grad } f = F$,

 (b) Calcule $\int_C F \cdot dr$, donde $r(t) = (\cos(t), \sen(t))$.

18. Encuentre el área de la parte de la superficie $z = xy + 20$ que está sobre el disco $x^2 + y^2 \leq 8$.

19. Verifique el teorema de Stokes para la superficie $x^2 + y^2 + z^2 = 16$, con $z \geq 0$, y $F(x, y, z) = (x^2 + y^2 - 4, 3xy, 2xz + z^2)$.

20. Sea $\alpha : [a, b] \rightarrow M$ una curva de clase C^1. Sea $f : [c, d] \rightarrow [a, b]$ una función de clase C^1, con $f(c) = a$ y $f(d) = b$. Demuestre que $\int_a^b \alpha^* \omega = \int_c^d (\alpha \circ f)^* \omega$, donde ω es una 1-forma definida en una vecindad de $\alpha([a, b])$.

21. Una curva cerrada sobre una superficie M, es una curva $\gamma : S^1 \rightarrow M$. Si ω es una 1-forma sobre M, defina la integral de ω a lo largo de γ por $\oint_{\gamma} \omega = \int_{S^1} ^* \omega$.

 Para el caso $M = \mathbb{R}^m$ o $M = \text{graf}(f)$, donde $f : \mathbb{R}^n \rightarrow \mathbb{R}$.

 Escriba $\oint_{\gamma} \omega$ explícitamente.

22. Sea S la superficie imagen de $\varphi(u, v) = (u \cos(v), u \sen(v), u)$. Encuentre un dominio donde φ es inyectiva. Encuentre un vector normal a la superficie en el punto $(1, 0, 1)$. Encuentre la ecuación del plano tangente a la superficie en ese punto. Finalmente encuen-
tre el área de la porción de la superficie determinada por $0 \leq u \leq 2$ y $0 \leq v \leq \pi$.

23. Calcule las siguientes integrales:

 (a) $\int_C xyz \, dy$, donde C es el segmento de línea desde $(1, 1, 1)$ a $(2, 3, 4)$.

 (b) $\int_C \text{grad}(f) \cdot dr$, donde f en una función de clase C^1 definida en \mathbb{R}^3 y C es una curva cerrada en \mathbb{R}^3.

24. Sea S el borde del cubo $[-2, 2] \times [-1, 1] \times [-3, 3]$ y sea $G(x, y, z) = (x^3, 3z, 2y)$. Calcule $\int_S G \cdot dS$.

25. Sea $F(x, y, z) = (x, y, 0)$. Calcule $\int_S \nabla \times F \cdot dS$, donde S es la superficie en \mathbb{R}^3 definida por la ecuación $x^2 + y^2 + (z - 3)^2 = 1$ para $z \geq 0$.

26. Sea $F(x, y) = (e^x \cos(3y), e^x \sin(3y))$.

 (a) Encuentre f tal que $\nabla f = F$.

 (b) Calcule $\int_C F \cdot ds$, sobre el camino $c(t) = (\cos(t), \sin(t))$, para $0 \leq t \leq 2\pi$.

27. Verifique el Teorema de Stokes para la superficie $x^2 + y^2 + z^2 = 16$ y $z \geq 0$, donde $F(x, y, z) = (x^2 + y^2 - 4, 3xy, 2xz + z^2)$.

28. Calcule $\int_S zdS$, donde S es la superficie dada por $z = x^2 + y^2$ para $x^2 + y^2 \leq 1$.

29. Calcule la integral $\int_C x \, ds$, para cada una de las siguientes curvas

 (a) C es el segmento de recta desde $(0, 0)$ a $(3, 1)$.
(b) C es la parte de la parábola $x = y^2$ desde $(1, 1)$ a $(9, 3)$.

30. Sea C la mitad de la cardioide $r = 1 - \cos(\theta)$, donde $0 \leq \theta \leq \pi$, esto es,

$$
\begin{align*}
 x &= \cos(\theta) - \cos^2(\theta) \\
 y &= \sin(\theta) - \sin(\theta) \cos(\theta)
\end{align*}
$$

Calcule la integral

$$
\int_C y\,dx - x\,dy.
$$

Calcule también la integral

$$
\int_C y\,dx - x\,dy \sqrt{x^2 + y^2}.
$$

31. Calcule la integral $\int_C x^2\,y\,ds$, donde C es el cuarto del astroide dado por

$$
\begin{align*}
 x &= \cos^3(\theta) \\
 y &= \sin^3(\theta)
\end{align*}
$$

con $0 \leq \theta \leq \pi/2$.

32. Parte del folium de Descarte $x^3+y^3=3xy$ puede ser parametrizado como

$$
\begin{align*}
 x &= \frac{3t}{1+t^3} \\
 y &= \frac{3t^2}{1+t^3}
\end{align*}
$$

Calcule la integral $\int_C x\,dy$, donde C es la parte del folium de Descarte recorrida cuando t varía entre 0 y 2 en la parametrización anterior.
33. Sea \(\Omega \) la región entre \(x = 0 \) y \(x = \pi \) acotada por el eje \(x \) y la gráfica de \(y = \sen(x) \). Sea \(C \) la curva frontera de \(\Omega \) recorrida en sentido contrario a las agujas del reloj. Use el teorema de Green para calcular la integral de línea

\[
\int_C (xy + x^3)\,dx + (6y + y^5)\,dy .
\]

34. Si \(F(x, y, z) = (x^2 y, xy^2, xyz) \). Calcule \(\text{rot}(F) \) ¿Puede calcular rápidamente \(\text{div}(\text{rot}(F)) \)?

35. Sea \(h : \mathbb{R} \to S^1 \), dada por \(h(t) = (\cos t, \sen t) \). Demuestre que si \(\omega \) es una 1-forma sobre \(S^1 \) entonces \(\int_{S^1} \omega = \int_0^{2\pi} h^* \omega \).

36. Sea \(f : M \to \mathbb{R} \) una función diferenciable, donde \(N \) es una superficie de clase \(C^k \). Sea \(\omega = df \). Pruebe que \(\int_{\gamma} \omega = 0 \), para cualquier curva cerrada \(\gamma \) sobre \(M \).

37. Sobre \(\mathbb{R}^2 - \{(0, 0)\} \) defina la 1-forma \(\omega \) por \(\omega(x, y) = \left(\frac{-y}{x^2 + y^2} \right) dx + \left(\frac{x}{x^2 + y^2} \right) dy \).

Calcule \(\int_C \omega \), donde \(C \) es un círculo de radio \(r \) centrado en el origen.

38. Use el Teorema de la Divergencia para calcular \(\int_S F \cdot n\,dS \), donde \(F(x, y, z) = (x^3, y^2, z^3) \) y \(S \) es el cilindro cerrado dado por \(x^2 + z^2 = 2 \), \(0 \leq y \leq 2 \), y \(n \) es el vector normal unitario que apunta para afuera de \(S \).

39. La elipse \(4(z - 1)^2 + y^2 = 1 \) en el plano \(yz \) es rotada alrededor del eje \(y \) para producir una superficie \(S \) en \(\mathbb{R}^3 \). Parametrice \(S \).

40. (a) Sea \(\omega \) una \(k \)-forma, con \(k \) impar, muestre que \(\omega \wedge \omega = 0 \).
(b) Sea $\omega = x_1^2dx_1 \wedge dx_2 \wedge dx_3 + (x_1x_4 - x_2)dx_2 \wedge dx_3 \wedge dx_4 + x_2x_4dx_3 \wedge dx_4 \wedge dx_1$ ¿Existe una forma η tal que $d\eta = \omega$?

(c) Sea $\omega = x_2dx \wedge dy + ydx \wedge dz + z^2dy \wedge dz$. Calcule $\int_S \omega$, donde S es la parte del cono $z = \sqrt{x^2 + y^2}$ entre $z = 1$ y $z = 2$, orientado por el vector normal unitario que apunta hacia afuera.

41. Calcule $\int_\gamma \omega$, donde $\omega = \frac{-y}{x^2+y^2}dx + \frac{x}{x^2+y^2}dy$ y γ es la elipse $\frac{1}{9}(x-2)^2 + \frac{1}{4}(y-1)^2 = 1$ orientada en el sentido contrario a las agujas del reloj.

42. Calcule $\int_\gamma \omega$, donde $\omega = ydx - xdy + dz$ y $\gamma(t) = (\text{sen}(t), t, t^3)$ con $0 \leq t \leq 2\pi$.

43. Use el Teorema de Green para encontrar una integral equivalente a la integral doble

$$\int_{-3}^{3} \int_{-2\sqrt{1-x^2/9}}^{2\sqrt{1-x^2/9}} 2xydxdy$$

44. Calcule $\int_\gamma y^2dx + e^ydy + e^xdz$, donde γ es dada por $\gamma(t) = (3, e^t, t)$ para $0 \leq t \leq 1$.

45. Calcule $\int_\gamma (e^{x^2} + 3y)dx + 2xydy$, donde γ es el borde de la región triangular en el plano xy, determinada por el triángulo de vértices $(0, 0)$, $(2, 0)$, y $(2, 4)$, recorrida en el sentido antihorario.

46. Calcule $\int_\gamma \frac{xdy - ydx}{x^2 + y^2}$, donde γ es la curva frontera de la región determinada por el trapecio de vértices $(0, 1)$, $(1, 1)$, $(2, -1)$, y $(-1, -1)$, orientada en el sentido antihorario.

47. Calcule las siguientes integrales
(a) \[\int_{\gamma} F \cdot ds \], donde \(F(x, y, z) = (y^2, xy, xz) \) y \(\gamma \) es el segmento de línea desde el origen a \((1, 2, 3)\).

(b) \[\int_{\gamma} F \cdot ds \], donde \(F(x, y, z) = (2xy, x^2, 3) \) y \(\gamma \) es un camino sobre la esfera unitaria comenzando en \((0, 0, 1)\) y finalizando en \((1, 0, 0)\) y realizando al menos dos vueltas completas alrededor del eje \(z \).

(c) \[\int_{\gamma} F \cdot ds \], donde \(F(x, y, z) = (\arctang(x^2) - \frac{y^2}{2}, e^{y^2} \frac{1}{1+y^2} + \frac{x^2}{2}, \log(3 + 4z^3)) \) y \(\gamma(t) = (\cos(t), \sen(t), \cos^2(t) - \sen^2(t)) \) y \(0 \leq t \leq 2\pi \).

(d) \[\int_{\gamma} ydx + zdy - dz \], donde \(\gamma(t) = (t, e^t, e^{-t}) \) y \(0 \leq t \leq 2\pi \).

48. Calcular \(\int_{\Gamma} y^2dx + x^2dy \), donde \(\Gamma \) es la semi-élipse superior recorrida en el sentido positivo (antihorario).

49. Calcular \(\int_{C} (x^3 - y)dx + (x + y)dy \), donde \(C \) es el círculo de ecuación \(x^2 + y^2 - 1 = 0 \) recorrido en el sentido positivo (antihorario)

50. Calcular \(\int_{C} xy^2dy - yx^2dx \), donde \(C \) es el círculo de ecuación \(x^2 + y^2 - 2y = 0 \), recorrido en el sentido antihorario.

51. Sea \(D = \{(x,y) \in \mathbb{R}^2 : x \geq 0, \ y \geq 0, \ x + y \leq 1\} \). Calcular \(\int_{\partial D} (x^2 + y^2)dx + (x^2 - y^2)dy \).

52. Sea \(D \) el semi-disco superior de centro en \((0, 0)\) y radio \(a \) \((a > 0)\), y sea \(\partial D^+ \) su borde superior. Calcular, de dos modos distintos, \(\int_{\partial D^+} x^2ydx + xy(2a - y)dy \).
53. Calcular \(\int_{D} (x^3 + y^3) \, dx \, dy \), donde \(D = \{(x, y) \in \mathbb{R}^2 : x \geq 0, \, \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \} \).

54. Calcular \(\int_{D} (3x^2 + y^2) \, dx \, dy \), donde \(D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1, \, (x - 1)^2 + y^2 \leq 1, \, y \geq 0 \} \).

55. Sea \(a > 0 \). Calcular \(\int_{\Gamma} y \, dx + z \, dy + x \, dz \), donde \(\Gamma \) es el círculo definido por las ecuaciones
\[
\begin{align*}
x + z &= a \\
x^2 + y^2 + z^2 &= a^2
\end{align*}
\]
orientado por el vector de coordenadas \((1, 0, 1)\).

56. Calcular \(\int_{S} f(x, y, z) \, dS \), donde \(S \) es definida por
\[
\begin{align*}
x^2 + y^2 &= z^2 \\
0 &\leq z \leq 1
\end{align*}
\]
y \(f(x, y, z) = x^2 y^2 z \).

57. Calcular \(\int_{S} xz \, dS \), donde \(S \) es la superficie parametrizada por
\[
\begin{align*}
x &= r \cos(\theta) \\
y &= r \sin(\theta) \\
z &= h \theta,
\end{align*}
\]
com \((r, \theta) \in D = [0, R] \times [0, \pi] \), \(r > 0 \), y \(h > 0 \).

58. Si \(R = [a, b] \times [c, d] \) y \(C \) es la frontera de \(R \) (orientada en el sentido antihorario), y \(P(x, y) \) es de clase \(C^1 \), entonces
\[
\int_{R} -\frac{\partial P}{\partial y} \, dx \, dy = \int_{C} P \, dx .
\]
59. Si definimos

\[f(a, b) = \int_{C_x + C_y} P \, dx + Q \, dy , \]

donde \(C_x \) = segmento de línea desde (0, 0) a \((a, 0)\), \(C_y \) = segmento de línea desde \((a, 0)\) a \((a, b)\), entonces \(\frac{\partial f}{\partial y} = P(x, y) \).

60. Sean \(\omega = -y \, dx + x \, dy \), \(\alpha = -\frac{(y-b)dx + (x-a)dy}{(x-a)^2 + (y-b)^2} \), \(\gamma = -\frac{(y-d)dx + (x-c)dy}{(x-c)^2 + (y-d)^2} \) para \((x, y) \neq (0, 0)\). Sea \(C \) el círculo unitario, orientado en sentido antihorario. Defina \(k = \int_C \alpha \).

(a) ¿Cuál es el valor de \(k \) si \((a, b)\) está en el disco unitario?.

(Indicación: se sabe que \(\int_C \omega = 2\pi \) y que \(d\omega = 0 \), excepto en el origen. Finalmente, \(k \) es igual a \(\int \omega \) sobre otro círculo ¿Por qué?

(b) ¿Cuál es el valor de \(k \) si \((a, b)\) está en el exterior del disco unitario?

(c) ¿Cuál es el valor de \(\int_C \alpha + \gamma \) si ambos \((a, b)\) y \((c, d)\) están en el interior del disco unitario?

61. Sea \(M \) una superficie de clase \(C^k \), con \(k \geq 1 \). Sea \(\pi : \mathbb{R} \times M \to M \) la proyección \(\pi(x, p) = p \) y sea \(i_a : M \to \mathbb{R} \times M \), la incrustación \(i_a(p) = (a, p) \). Pruebe que \(dP \omega + P d\omega = \omega - \pi^* i_a^* \omega \).

62. Sea \(\gamma : [a, b] \to \mathbb{R}^n \) una curva continua. Decimos que \(\gamma \) es de clase \(C^1 \) por partes si, existe una partición \(t_0 = a < t_1 < \cdots < t_n = b \) tal que \(\gamma_i = \gamma / [t_i, t_{i+1}] \), \(i = 0, 1, \ldots, n-1 \), es de clase \(C^1 \), usamos la notación \(\gamma = \{\gamma_0, \ldots, \gamma_{n-1}\} \). Sea \(M \subset \mathbb{R}^2 \) una región, cuyo borde \(\gamma \) es una curva cerrada simple \(C^1 \) por partes. Demuestre que el Teorema de Green vale para \(M \).
63. Sea \(M \subset \mathbb{R}^2 \) una región conexa. Decimos que \(M \) es múltiplemente conexa si su borde, \(\partial M \), es una unión finita disjunta de curvas cerradas simples \(C^1 \) por partes. Suponga que \(\partial M = \gamma_1 \cup \cdots \cup \gamma_n \) y que \(\gamma_2, \ldots, \gamma_n \) están contenidas al interior de \(\gamma_1 \), y que para cada \(i > 1, j > 1 \) la curva \(\gamma_i \) está al exterior de \(\gamma_j \).

Pruebe la siguiente generalización del Teorema de Green. Sean \(P, Q : M \to \mathbb{R} \), funciones \(C^1 \). Entonces

\[
\iint_M \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy = \oint_{\gamma_1} P \, dx + Q \, dy - \sum_{i=2}^n \oint_{\gamma_i} P \, dx + Q \, dy.
\]

64. Sea \(f : \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = xyz \). Pruebe que \(\int_{S^2} f = 0 \). (Indicación. No es necesario hacer ningún cálculo. Justifique su respuesta)

65. Sea \(F : \mathbb{R}^3 \to \mathbb{R}^3, F(x, y, z) = (x^2, y^2, z^2) \). Calcular \(\iint_{S^2} F \cdot n \, ds \), donde \(n(x, y, z) \) es el vector normal unitario exterior de \(S^2 \) en el punto \((x, y, z) \). (Indicación. Usar coordenadas esféricas)

66. Sean \(u, v : U \subset \mathbb{R}^2 \to \mathbb{R} \) funciones de clase \(C^1 \), donde \(U \) abierto con \((0, 0) \in U \). Suponga que \(U \) contiene el disco \(D^2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1 \} \). Definamos \(F(x, y, z) = (v(x, y), u(x, y)) \) y \(G(x, y) = (\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x} - \frac{\partial v}{\partial y}) \). Calcular \(\iint_{D^2} F \cdot G \, dx \, dy \), si se sabe que sobre la frontera de \(D^2 \) se tiene que \(u(x, y) = 1 \) y \(v(x, y) = y \).

67. Sea \(S \subset \mathbb{R}^3 \) una superficie que es la imagen de una parametrización \(\varphi : U_0 \subset \mathbb{R}^2 \to \mathbb{R}^3 \), si escribimos \(\varphi = (\varphi_1, \varphi_2, \varphi_3) \). Demuestre que
el área de S es dada por

$$A(S) = \int \int_{U_0} \sqrt{\left(\frac{\partial (\varphi_2, \varphi_3)}{\partial (x, y)} \right)^2 + \left(\frac{\partial (\varphi_3, \varphi_1)}{\partial (x, y)} \right)^2 + \left(\frac{\partial (\varphi_1, \varphi_2)}{\partial (x, y)} \right)^2} \, dx \, dy,$$

donde $\frac{\partial (f, g)}{\partial (x, y)} = \det \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix}$.

Aplique lo anterior para calcular el área de la esfera $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = a^2 \}$ centrada en el origen y radio $a > 0$. (Indicación. Use la fórmula anterior para el caso de parametrización de un gráfico)

68. Sea H el hemisferio $H = \{(x, y, z) \in S^2 : x^2 + y^2 + z^2 = 1, z \geq 0 \}$, y sea $n(x, y, z)$ el vector normal unitario exterior sobre la esfera en el punto (x, y, z). Si $F(x, y, z) = (0, 0, x^2 + xy - z^2)$.

Calcular $\int \int_{S} \nabla F \cdot n \, ds$.

69. Calcular $\int_{C} y^2 \, dx + x \, dy$, si $C = C_1 \cup C_2$ está orientada positivamente, donde C_1 es el segmento de recta uniendo $(0, 2)$ con $(-5, -3)$ y C_2 es arco de parábola $x = 4 - y^2$ con $-5 \leq x \leq 4$.

Además, verifique el resultado usando el teorema de Green.

70. Resuelva la ecuación $\text{rot} \, F = G$, si

(a) $G(x, y, z) = (1, 1, 1)$.

(b) $G(x, y, z) = (2y, 2z, 0)$.

(c) $G(x, y, z) = (0, 0, e^x - e^y)$.

71. Calcular la siguiente integral sobre la superficie indicada.

$$\int \int_{S} (x - 2y + z) \, dS$$
(a) \(S : z = 4 - x, \ 0 \leq x \leq 4, \ 0 \leq y \leq 4. \)

(b) \(S : z = 10 - 2x + 2y, \ 0 \leq x \leq 2, \ 0 \leq y \leq 4. \)

(c) \(S : z = 10, \ x^2 + y^2 \leq 1. \)

72. En cada caso, calcular
\[\int \int_S f(x, y, z) \, dS \]

(a) \(f(x, y, z) = \sqrt{x^2 + y^2 + z^2}, \ S : z = \sqrt{x^2 + y^2}, \ x^2 + y^2 \leq 4. \)

(b) \(f(x, y, z) = x^2 + y^2 + z^2, \ S : z = x + 2, \ x^2 + y^2 \leq 1. \)

(c) \(f(x, y, z) = \sqrt{x^2 + y^2 + z^2}, \ S : z = \sqrt{x^2 + y^2}, \ (x - 1)^2 + y^2 \leq 1. \)

(d) \(f(x, y, z) = x^2 + y^2 + z^2, \ S : 9 = x^2 + y^2, \ 0 \leq x \leq 3, \ 0 \leq y \leq 3, \ 0 \leq z \leq 9. \)

(e) \(f(x, y, z) = x^2 + y^2 + z^2, \ S : 9 = x^2 + y^2, \ 0 \leq x \leq 3, \ 0 \leq y \leq 3, \ 0 \leq z \leq x. \)

(f) \(f(x, y, z) = x, \ S : z = x^2 + y, \ 0 \leq x \leq 1, \ -1 \leq y \leq 1. \)

(g) \(f(x, y, z) = x + z, \ S \) es la parte situada en el primer octante del cilindro \(x^2 + y^2 = 9, \ 0 \leq z \leq 4. \)

73. En cada caso, use el Teorema de Gauss para evaluar
\[\int \int_S F \cdot N \, dS \]

(a) Si \(Q \) es la región sólida entre el paraboloide \(z = 4 - x^2 - y^2 \) y el plano \(XY \) para \(F(x, y, z) = (2z, x, y^2). \)

(b) Si \(Q \) es el sólido limitado por el cilindro \(x^2 + y^2 = 4, \) el plano \(x + z = 6, \) y el plano \(XY \) para \(F(x, y, z) = (x^2 + \text{sen}(z), xy + \cos(z), e^y). \)
(c) Si Q es el sólido limitado por la superficie S: cubo definido por los planos $x = 0, x = a, y = 0, y = a, z = 0, z = a$ para $F(x, y, z) = (x^2, y^2, z^2)$.

(d) Si Q es el sólido limitado por la superficie S: $z = \sqrt{a^2 - x^2 - y^2}$, $z = 0$, para $F(x, y, z) = (x^2, -2xy, xyz^2)$.

(e) Si Q es el sólido limitado por la superficie S: $x^2 + y^2 + z^2 = 4$ para $F(x, y, z) = (x, y, z)$.

(f) Si Q es el sólido limitado por la superficie S: $x^2 + y^2 = 9$, $z = 0$, $z = 4$, para $F(x, y, z) = (x, y^2, -z)$.

(g) Si Q es el sólido limitado por la superficie S: $z = 4 - y$, $z = 0$, $x = 0$, $x = 6$, $y = 0$, para $F(x, y, z) = (x^3, x^2y, x^2 e^y)$.

74. Use el Teorema de Green para calcular la integral $\int_C (y + x^5)dx + (6y + y^5 + y^7)dy$, donde C es el círculo $(x - 1)^2 + y^2 = 1$ recorrido en sentido contrario a las agujas del reloj.

75. Calcule la integral
\[
\int_S z^{-3}(x^2 + y^2 + z^{-4})^{-1/2}dS,
\]

donde S es la porción del paraboloide $xyz = 1$ que está sobre el rectángulo $1 \leq x \leq 2$, $1 \leq y \leq 3$.

76. Sea $F(x, y, z) = (e^{\tan(z)}y, e^{z\tan(z)}x, (4 - x^2 - y^2)z)$. Sea Ω la región que está por encima del paraboloide $z = x^2 + y^2$ y por debajo del plano $z = 4$. Sea S el borde de Ω y sea n el vector normal unitario que apunta hacia afuera de S. Use el teorema de la divergencia para calcular la integral
\[
\int_S F \cdot n dS.
\]
77. Sea S la superficie consistiendo de la parte del paraboloide \(x^2 + y^2 + z = 0 \), \(z \geq 0 \), la cual está dentro del cilindro \(\frac{x^2}{9} + \frac{y^2}{4} = 1 \). Suponga que el vector normal unitario \(n \) a \(S \) apunta afuera de \(S \). Use el Teorema de Stokes para calcular la integral
\[
\int_S \text{rot}(F) \cdot n \, dS ,
\]
donde \(F(x, y, z) = (y, x, xy) \) (Ind. La curva \(C \), borde de \(S \) puede ser parametrizada por \(x = 3 \cos(t) , \ y = 2 \sen(t) , \ y \ z = ? \) se deja como un pequeño trabajo).

78. Calcular \(\int_S F \cdot n \, dA \), donde \(F(x, y, z) = (1, 1, z(x^2 + y^2)^2) \) y \(S \) es el cilindro \(x^2 + y^2 = 1 \) con \(0 \leq z \leq 1 \).

79. Calcular \(\int_S (\nabla \times F) \cdot dS \), donde \(S \) es la superficie delimitada por \(x^2 + y^2 + z^2 = 1 \) y \(x + y + z \geq 1 \), y \(F(x, y, z) = r(x, y, z) \times (e_1 + e_2 + e_3) \) con \(r(x, y, z) = (x, y, z) \) y \(e_i \) para \(i = 1, 2, 3 \) el correspondiente vector canónico.

80. Calcular la integral
\[
\int_S z^2 \, dS ,
\]
donde \(S \) es la parte del paraboloide \(z = 9 - x^2 - y^2 \) la cual está por encima del plano \(z = 0 \).

81. Si \(C \) la cardioide dada en coordenadas polares por \(r = 1 + \cos(\theta) \).
Use el Teorema de Green para calcular la integral de línea
\[
\int_C xy \, dx + x^2 \, dy ,
\]
donde recorremos la cardioide en el sentido contrario a las agujas del reloj.
82. Calcule $\int_C x^4dx + xydy$, donde C es la curva formada por los segmentos de línea desde $(0,0)$ a $(1,0)$, desde $(1,0)$ a $(0,1)$, y desde $(0,1)$ a $(0,0)$, directamente y también usando el Teorema de Green.

83. Sea $F(x, y) = (2xy, x^2)$. Muestre que la integral de línea de F a lo largo del camino formado por el borde del cuadrado $[0,1] \times [0,1]$ es 0, usando:

 (a) Cálculo directo;

 (b) mostrando que F es el gradiente de una función f;

 (c) usando el Teorema de Green.

84. Sea $F(x, y, z) = (ye^z, ze^z, xye^z)$. Sea C una curva cerrada simple en \mathbb{R}^3 que es el borde de una superficie. Muestre que $\int_C F \cdot ds = 0$.

85. Sea $F(x, y, z) = (2xy + 3z^3, x^2, 9xz^2)$. Sea C cualquier camino diferenciable comenzando en $(2,1,1)$ y terminando en $(5,0,0)$. Calcule $\int_C F \cdot dr$.

86. ¿Para qué valores de a y b la aplicación $F(x, y, z) = (bxz + 2y, bx + 2ayz, y^2 + ax^2)$ es el gradiente de una función f?

87. Calcule $\int_C F \cdot dr$, donde $r(t) = (\cos(t), \sin(t))$, con $0 \leq t \leq 2\pi$, y $F(x, y) = (-y^2, x^2)$.

88. Sea $F(x, y) = (3 + 2xy, x^2 - 3y^2)$. Calcule $\int_C F \cdot dr$, donde C es la curva dada por $r(t) = (e^t \sin(t), e^t \cos(t))$, con $0 \leq t \leq \pi$.

89. Calcule $\int_C zdx + y^2dy + xyzdz$ si C es dada por $r(t) = (1, 2t, t^2)$, con $0 \leq t \leq 1$.
90. Calcule las siguientes integrales

(a) \(\int_{\gamma} \frac{x}{x^2 + y^2} \, dy - \frac{y}{x^2 + y^2} \, dy \), donde \(\gamma \) es el círculo \((x - 2)^2 + (y - 3)^2 = 1\) orientado en sentido antihorario.

(b) \(\int_{\gamma} x \, dx + y^2 \, dy + z^3 \, dz \), donde \(\gamma \) es el segmento de recta uniendo \((-1,0,2)\) a \((2,3,2)\).

(c) \(\int_{\gamma} (e^y + 2xy \cos(x^2y)) \, dx + (xe^y + x^2 \cos(x^2y)) \, dy \), donde \(\gamma \) es la curva frontera de la región acotada por la parábola \(y = x^2 + 1 \) y por la recta \(y = x + 3 \), orientada en el sentido antihorario.

(d) \(\int_{\gamma} F \cdot ds \), donde \(F(x,y,z) = (x^5, y^2, z \cos(y)) \) y \(\gamma(t) = (\cos(t), \sin(t), \cos(2t)) \), con \(0 \leq t \leq 1 \).

(e) \(\int_{\gamma} (3x^2 + x^2y + y^2) \, dx + (x^3 + 2xy + y^3) \, dy \), donde \(\gamma \) es la curva frontera de la región acotada por la parábola \(y = x^2 + 1 \) y por la recta \(y = x + 3 \), orientada en el sentido antihorario.

91. Sea \(S \) la parte del plano \(x + y + z = 1 \) que yace sobre el disco elíptico \(x^2 + 2y^2 \leq 1 \). Parametrice \(S \) y calcule su área.

92. Calcule las siguientes integrales

(a) \(\int_{\gamma} F \cdot ds \), donde \(F(x,y,z) = (x^5, y^2x + z^3, 3yz^2) \) y \(\gamma(t) = (\cos(t), \sin(t), \cos(2t)) \), con \(0 \leq t \leq 2\pi \).

(b) \(\int_{\gamma} \omega \), donde \(\omega = \frac{x \, dy - y \, dx}{x^2 + y^2} \) y \(\gamma \) es el círculo \(x^2 + 2x + y^2 - 2y = 1 \), orientado en sentido antihorario.

(c) \(\int_{\gamma} \omega \), donde \(\omega = y^2 \, dx + e^x \, dy + e^z \, dz \) y \(\gamma(t) = (3, e^t, t) \), con \(0 \leq t \leq 1 \).

93. Encuentre el área de la parte de la esfera \(x^2 + y^2 + z^2 = 4 \) la cual está por arriba del plano \(z = \sqrt{2} \).
94. Sea \(S \) la parte de la superficie \(x^2 + y^2 + z = 1 \) la cual yace por encima del plano \(xy \), orientada por el vector normal unitario que apunta hacia arriba. Calcule \(\int_S \omega \), donde \(\omega = zd\text{d}x + y\text{d}y \wedge \text{d}z \).

95. Sea \(V \) una región cerrada y acotada en \(\mathbb{R}^3 \) con borde \(\partial V \) una superficie diferenciable. Muestre que

\[
\text{vol}(V) = \frac{1}{3} \int_{\partial V} x\text{d}y \wedge dz + ydz \wedge dx + zdx \wedge dy.
\]

96. Calcular las siguientes integrales de línea

(a) \(\int_C (x+y)\text{d}s \), donde \(C \) es el contorno del triángulo de vértices \(O = (0,0), A = (1,0), B = (0,1) \),

(b) \(\int_C (x^2+y^2)\text{d}s \), donde \(C \) es la curva \(x = a(\cos(t) + t\sin(t)), y = a(\sin(t) - t\cos(t)) \), \(0 \leq t \leq 2\pi \).

(c) \(\int_C (x^2+y^2+z^2)\text{d}s \), donde \(C \) es la hélice circular \(x = a\cos(t), y = a\sin(t), z = bt \), \(0 \leq t \leq 2\pi \).

97. Hallar las longitudes de los arcos de las curvas siguientes

(a) \(x = 3t, y = 3t^2, z = 2t^3 \), desde \((0,0,0) \) hasta \((3,3,2) \);

(b) \(x^2+y^2 = cz, y = tang\left(\frac{z}{c}\right) \), desde \((0,0,0) \) hasta \((x_0,y_0,z_0) \);

(c) \(x = e^{-t}\cos(t), y = e^{-t}\sin(t), z = e^{-t} \), \(0 < t < +\infty \).

98. Calcular \(\int_\gamma \omega \), donde

(a) \(\omega = \frac{1}{xy} dx + \frac{1}{x+y} dy \) \(\gamma(t) = (2t, 5t) \), con \(1 \leq t \leq 4 \), orientado negativamente,

(b) \(\omega = e^t(\cos(y)dx + \sin(y)dy) \) \(\gamma \) el contorno del cuadrado de vértices \((0,0), (1,0), (1,1), (0,1) \), orientado positivamente.
(c) \(\omega = xy \, dx + (x^2 - y^2) \, dy \) y \(\gamma \) el camino cuya imagen es la elipse de ecuación \(x^2 + 2y^2 = 4 \), dotado de una orientación cualquiera.

(d) \(\omega = y^2 \, dx + x^2 \, dy \) y \(\gamma \) el camino cuya imagen es la elipse de ecuación \(\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 - 2 \left(\frac{x}{a} \right) = 0 \), dotado de la orientación canónica.

99. Sea \(F : \mathbb{R}^2 \to \mathbb{R}^2 \), definido por \(F(x, y) = (xy, x^2 - y^2) \), y sea \(\gamma \) la circunferencia unitaria orientada positivamente, con punto inicial \((1, 0)\). Calcular \(\int_\gamma F \cdot ds \).

100. Calcular \(\int_\gamma y \, dx - x \, dy \) a lo largo de la curva cerrada \(\gamma = \gamma_1 \cup \gamma_2 \), siendo \(\gamma_1 \) el primer cuadrante de la elipse \(\frac{x^2}{16} + \frac{y^2}{9} = 1 \) y \(\gamma_2 \) el segmento que une los puntos \((0, 3)\) y \((4, 0)\).

101. Hallar todas las circunferencias del plano \(\mathbb{R}^2 \) tales que, con cualquier orientación, la integral de línea de la forma diferencial \(\omega(x, y) = y^2 \, dx + x^2 \, dy \) sea nula.

102. Calcular \(\int_\gamma x \, dx + y \, dy + z \, dz \) a lo largo del arco de hélice de ecuaciones paramétricas \(x = 4 \cos(\lambda) , \ y = 4 \sin(\lambda) , \ z = 3\lambda \), para \(0 \leq \lambda \leq 2\pi \).

103. Calcular \(\int_\sigma y \, dx + (3y^3 - x) \, dy + z \, dz \) para cada una de las trayectorias \(\sigma(t) = (t, t^n, 0) , \ 0 \leq t \leq 1 \) y \(n \in \mathbb{N} \).

104. Calcular \(\int_\gamma (y^2 + z^2) \, dx + (z^2 + x^2) \, dy + (x^2 + y^2) \, dz \), donde \(\gamma \) el camino cuya imagen es dada por

\[
\begin{align*}
x^2 + y^2 - 2pz & = 0 \\
x + y - z + p & = 0
\end{align*}
\]
con una orientación cualquiera.

105. ¿La forma diferencial \((e^x y^2 + 3x^2 y)dx + (2ye^z + x^3)dy\) admite función potencial? En caso afirmativo calcularla.

106. ¿La forma diferencial \(2xyzdx + (x^2z + 2ye^z)dy + (x^2y + y^2e^z)dz\) admite función potencial? en caso afirmativo calcularla.

107. Sean \(P(x, y) = \frac{y}{x^2 + y^2}\) y \(Q(x, y) = \frac{-x}{x^2 + y^2}\), y sean \(\gamma_1 : x = \cos(\lambda), y = \sin(\lambda)\), con \(0 \leq \lambda \leq \pi\), y \(\gamma_2 : x = -\cos(\mu), y = \sin(\mu)\), con \(\pi \leq \mu \leq 2\pi\).

(a) Comprobar que en todo \(\mathbb{R}^2\), excepto en el origen de coordenadas, se cumple \(\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}\).

(b) Decidir si se verifica \(\int_{\gamma_1} Pdx + Qdy = \int_{\gamma_2} Pdx + Qdy\).

(c) Calcular ambas integrales por separado.

108. Sea \(F(x, y, z) = (xy, y, z)\). Puede existir una función \(f\) tal que \(F = \nabla f\) ?.

109. Sea \(F(x, y, z) = (z^3 + 2xy, x^2, 3xz^2)\). Probar que la integral de \(F\) a lo largo del perímetro del cuadrado con vértices en \((1,1,5), (-1,1,5), (-1,-1,5), (1,-1,5)\), es nula.

110. Sea \(F(x, y, z) = (e^x \sin(y), e^x \cos(y), z^2)\). Calcular \(\int_{\sigma} F \cdot ds\), donde \(\sigma(t) = (\sqrt{t}, t^3, e^{\sqrt{t}})\), con \(0 \leq t \leq 1\).

111. Calcular \(\int_{\gamma}(6xy + y)dx + (3x^2 + x)dy\), donde

(a) \(\gamma(t) = (t^2, t^3)\), con \(1 \leq t \leq 2\), recorrido con la orientación canónica.
(b) \(\gamma \) cualquier camino de clase \(C^1 \) por partes, uniendo \((1,1)\) con \((1,8)\).

(c) \(\gamma \) un camino cerrado cualquiera de clase \(C^1 \) por partes.

112. Calcular la integral de línea \(\int_\gamma yzdx + zxdy + xydz \), donde

(a) \(\gamma(t) = (t,t^2,t^3) \), con \(0 \leq t \leq 1 \), recorrido con la orientación canónica.

(b) \(\gamma(t) = (\cos(t), \sen(t), \tang(t)) \), con \(0 \leq t \leq \frac{\pi}{4} \), recorrido con la orientación canónica.

(c) \(\gamma \) cualquier camino de clase \(C^1 \) por partes, uniendo \((1,-1,2)\) con \((-2, -1, 1)\).

(d) \(\gamma \) un camino cerrado cualquiera de clase \(C^1 \) por partes.

113. Sea \(D \) un dominio simplemente conexo de \(\mathbb{R}^2 \), y sea \(f \) una función de clase \(C^2 \) en \(D \). Probar que la condición de que \(f \) sea armónica en \(D \) (es decir, satisface \(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0 \)) es suficiente para que \(\int_\gamma \frac{\partial f}{\partial x} dy - \frac{\partial f}{\partial y} dx = 0 \) cualquiera que sea la curva simple, cerrada y rectificable \(\gamma \) contenida en \(D \).

114. Sean \(\gamma, \gamma^* \) dos curvas simples cerradas del plano, disjuntas entre sí, positivamente orientadas, y tales que \(\gamma^* \) está contenida en la región encerrada por \(\gamma \). Sean \(P(x,y), Q(x,y) \) dos funciones de clase \(C^1 \) en un abierto \(A \) que contenga a ambas curvas y a la región entre ellas, satisfaciendo \(\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \). Probar que se verifica

\[
\int_\gamma Pdx + Qdy = \int_{\gamma^*} Pdx + Qdy.
\]
115. Calcular \(\int_{\gamma} y \left(\frac{y}{x^2 + y^2} \right) dx - \frac{x}{x^2 + y^2} dy \), donde \(\gamma \) la elipse de ecuación paramétrica \(x = 4 \cos(\lambda), \ y = 3 \sin(\lambda) \), con \(0 \leq \lambda \leq 2\pi \).

116. Usar el teorema de Green para calcular \(\int_{C^+} (y^2 + x^3)dx + x^4dy \), donde \(C^+ \) es el perímetro de \([0, 1] \times [0, 1]\) en dirección antihoraria.

117. Usar el teorema de Green para calcular el área encerrada por la elipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \).

118. Usando el teorema de Green, calcular el área de la región interior a la cardioide \(\rho = 1 + \cos(\theta) \), con \(0 \leq \theta \leq 2\pi \).

119. Calcular el trabajo de \(W(x, y) = \left(\frac{1}{1+y}, -\frac{1}{1+x} \right) \) a lo largo del camino \(\gamma(t) = (t, t^2) \), \(0 \leq t \leq 1 \), dotado de la orientación canónica.

120. Calcular el trabajo de \(W = (x, y, z) = (2y, x, z) \) a lo largo del camino \(\gamma(t) = (t^{1/2}, t^{-1/2}, t) \), \(1 \leq t \leq 2 \), dotado de la orientación canónica.

121. Se considera el campo de fuerzas \(F(x, y) = (y, x) \). Calcular el trabajo de \(F \) a lo largo de las curvas

 (a) \(\gamma_1 : y = x \), entre los puntos \((0, 0)\) y \((1, 1)\).
 (b) \(\gamma_2 : y = x^2 \), entre los puntos \((0, 0)\) y \((1, 1)\).
 (c) \(\gamma_3 : y = x^3 \), entre los puntos \((0, 0)\) y \((1, 1)\).
 (d) \(\gamma_4 : y = x^3(x-1) \log(x+2) \), entre los puntos \((0, 0)\) y \((1, 1)\).

122. Calcular el trabajo realizado por una partícula sometida al campo de fuerzas \(F(x, y) = (e^x - y^3, \cos(y) + x^3) \) que recorre la circunferencia unitaria en el sentido antihorario.
123. Se consideran el campo vectorial \(F(x, y, z) = \left(\frac{y}{x^2 + y^2}, -\frac{x}{x^2 + y^2}, 3z^2 \right) \) y la curva \(\gamma \) de ecuación \(x = \lambda, \ y = \lambda^3 + \lambda^2 - 1, \ z = \lambda + 3 \). Calcular el trabajo necesario para llevar una masa unidad a lo largo de \(\gamma \) desde el punto \((-1, -1, 2)\) al punto \((1, 1, 4)\).

124. Se dice que una función \(f(x, y) \) es armónica si \(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0 \). Demostrar que si \(f \) es armónica y \(C \) es una curva cerrada suave por partes del plano, entonces
\[
\int_C \frac{\partial f}{\partial y} \, dx - \frac{\partial f}{\partial x} \, dy = 0.
\]

125. Calcule \(\int_S F \cdot N \, dS \), donde \(F(x, y, z) = (xy, z, x + y) \) y \(S \subset \mathbb{R}^3 \) es la superficie acotada por los planos \(y = 4, \ z = 4 - x \), y los planos coordenados.

126. Calcular el volumen del sólido limitado inferiormente por el paraboloide \(x^2 + y^2 + z = 4R^2 \) y superiormente por el cilindro \(x^2 + (y - R)^2 = R^2 \), donde \(R > 0 \) y \(z \leq 4R^2 \).

127. Calcular la integral \(\int_{\partial S} F \cdot dr \), directamente y usando el teorema de Stokes, donde \(F(x, y, z) = (2z, x, y^2) \) y \(S \subset \mathbb{R}^3 \) es la superficie del paraboloide \(z = 4 - x^2 - y^2 \) con \(z \geq 0 \).
Bibliografía

